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Abstract

The application area of wireless sensor networks often include the deploy-
ment in harsh environments. Therefore, the devices are mainly battery-
powered but nevertheless must provide a lifetime in the order of months to
years. This requires the use of energy efficient protocols. Such protocols
need to support duty-cycling, where a node only enables the transceiver
module for a short time if it expects a message or wants to transmit to
other nodes. However, whereas most protocols are aimed at reducing the
duty-cycle, our approach also establishes a time-triggered approach, which
takes advantage of the a priori known transmission events. Such a tech-
nique requires a global notion of time and therefore is based on algorithms
for maintaining synchronization. This ensures that every node has the
same local view of the global time. The controllers running this algorithm
often have to be very inexpensive and make use of the cheap on-chip oscil-
lators which generally entail big clock drifts and thus requires a frequently
resynchronization and/or a precise clock drift calibration. Additionally,
the network topology and unidirectional communication connections also
have a deep impact on the precision of the synchronization algorithm. For
this reason we introduce an alternative biologically-inspired synchroniza-
tion algorithm together with a clock rate calibration scheme to build up
synchronicity. Synchronicity is the ability to organize simultaneous collec-
tive actions across a sensor network. Hence our approach is based on dis-
tributed synchronous clocking and is a type of internal synchronization. In
contrast to centralized clock synchronization schemes, the distributed syn-
chronization approach has the inherent advantage for complete scalability
and graceful degradation. This thereby achieved common notion of time
is also used to establish a time-triggered protocol. In order to perform a
rapid development, this approach was first simulated with a modified prob-
abilistic wireless sensor network simulator for different network topologies
and parameter choices. The results are then compared with the outcomes
of several testbed experiments based on ZigBee nodes from Atmel.
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1 Introduction

Since technology improvements in the last decade have made smaller and more
inexpensive sensor nodes possible, sensor networks have become a big research
field. In the beginning such a network was composed of small numbers of sensor
nodes whereas these nodes were wired to a central processing unit. Nowadays
sensor networks are mostly built-on wireless technology with a big number
of sensing nodes with local processing. Hence, that progress enabled the use
of sensor networks in a variety of applications. For example, the monitoring
of a phenomenon could be a difficult challenge if the exact location where to
place a sensing element is not known. Alternatively, distributed sensing allows
a closer placement to the phenomenon and therefore a better Signal-to-noise
Ratio (SNR) [EGPS01]. However, in most cases the environment where such
sensing nodes are in use is harsh and usually does not provide an infrastruc-
ture. Such a malicious environment challenges some design constraints like
robustness, low power consumption, physical size, network discovery, lifetime
and many others that vary from sensor to sensor [CK03]. Thus, the sensors
must rely on local, finite, and relatively small energy sources. Especially, com-
munication is a key energy consumer. In order to be economically feasible, the
devices generally must have a lifetime on the order of months to years [RSPS02]
without battery replacement. According to [YHE04], the major sources of en-
ergy waste are packet collisions, overhearing, control packet overhead, and idle
listening whereas in many MAC-protocols such as IEEE 802.11 more than 50
percent are spent on idle listening [YHE04]. Several approaches have been pro-
posed to improve energy efficiency focusing mostly on clustering mechanisms,
routing algorithms, energy dissipation schemes, sleeping schedules, and so on.
Still a maximized network lifetime requires the use of a well-structured design
methodology and must consider the tradeoffs between energy consumption,
system performance, and operational fidelity.

1.1 Motivation and Objectives

Typical energy efficient implementations keep the nodes largely inactive for
most of the time and become active only for a short time if something is de-
tected. This results in a periodic sleep/listen approach which reduces the idle
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1 Introduction 1.1 Motivation and Objectives

listening and is called sleep scheduling. A simple solution for this concept is
based on coordination which means that an ensemble of nodes must agree on
the same schedule and therefore will sleep and listen at the same time. Differ-
ent distributed algorithms for choosing and maintaining such a schedule have
already been proposed. A good survey on clock synchronization algorithms can
be found in [SBK05]. In other words clock synchronization in sensor networks,
especially in multi-hop wireless ad-hoc networks, is an important necessity to
share a common view of the local clock time. Without a precise clock synchro-
nization, the mobile devices do not wake up at the same time and thus the
power management operation will not work well.

Another requirement is a reliable and collision-free communication among
the participants, especially when the devices are communicating over wireless
media. This requisite can be met through establishing a TDMA medium access
scheduling which also eliminates the problem if the nodes are several hops away
and a single broadcast cannot reach them all. To achieve this goal, every node
must have the same notion of time which demands the implementation of a
synchronization approach.

In our work we have used the biologically-inspired Firefly algorithm for
synchronicity to achieve coordinated sleeping. According to [WATP+05] syn-
chronicity is the ability to organize simultaneous collective actions across a
sensor network. Hence our approach is based on distributed synchronous clock-
ing and is a type of internal synchronization. In contrast to centralized clock
synchronization schemes, the distributed synchronization approach has the in-
herent advantage for complete scalability and graceful degradation.

A further important problem is that the underlying controllers of the in-
dividual nodes often have to be very inexpensive and the applications makes
use of the imprecise on-chip oscillators which have big clock drifts of up to
±100000ppm. This requires a frequently resynchronization. On this account,
along with the clock-state synchronization approach based on the Firefly al-
gorithm, we introduced a clock-rate calibration. This enables an infrequent
resynchronization and therefore improves energy consumption.

In this work we present a low duty-cycle protocol which works without bea-
cons using the RFA [WATP+05] for network synchronicity. This approach is
appropriate for ad-hoc sensor networks where the topology is not known or
might change. Based on this synchronization service, a TDMA scheme was
introduced to divide a period into several slots with different activities. More
precisely, such activities for an individual node can be the broadcasting of a
message, listening to a message, executing of different tasks, or simple a sleep
interval. In general this structure is similar to a TTP. However, in contrast
to TTPs our TDMA scheme is not based on time synchronization but on syn-
chronicity. Hence we have no reference clock or global coordination for defining
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1 Introduction 1.2 Structure of the Thesis

the absolute time duration of an interval.

1.2 Structure of the Thesis

The thesis is structured as follows: Chapter 2 gives an introduction into the
basic terms and concepts used throughout the work. Further, Chapter 3 re-
flects the results of related work using the Firefly algorithm. The concept
of this biologically-inspired algorithm for clock state synchronization and the
clock rate calibration approach are described in Chapter 4. Next, Chapter 5
presents JProwler, a probabilistic wireless sensor network simulator and the
modifications made to it so that the simulation model comes closer to reality.
Chapter 6 represents the simulation results of our algorithm based on sev-
eral experiments including different network topologies and parameter choices.
Moreover, Chapter 7 explains the used testbed environment and further the
implementation of the algorithm whereas the results of these experiments are
discussed in Chapter 8. Finally, the thesis ends with a conclusion in Chapter 9
summarizing the key results of the presented work and giving an outlook on
what can be expected from future research in this area.
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2 Concepts

This chapter gives an overview on the terms and concepts used for clock syn-
chronization in distributed systems that are required to understand this work.
It should be noted that the semantics of the introduced terms differs due to
different applications and purposes of distributed systems and clock synchro-
nization.

This chapter first introduces the terms of distributed systems and their com-
position. Afterwards the focus lies on clocks, time standard and formats, and
clock synchronization. The third part gives an overview of the Time-Triggered-
Architecture.

2.1 Distributed Systems

The term “Distributed Systems” has various definitions depending on the ap-
plication and the research field. In [Pau02], Paulitsch cited two definition which
also best fits to this work. Generally, a distributed system comprises of different
nodes which are able to interact among each other. In this work the commu-
nication is performed wireless and each node is represented by a sensor node.
Further, the main task in our work is to gather information from all nodes
which therefore requires special protocols concerning energy and throughput.
However, such a decentralized structure consists of different basic components
which are described in the next paragraph.

Nodes, Communication Systems, Software, and States. A distributed sys-
tem consists of multiple, autonomous computers, which are called nodes. A
node consists its own hardware (e.g. oscillator, processor, memory, interfaces)
and software (e.g. application programs, operating systems) to perform a well-
defined distributed communication pattern. The software is an algorithmic de-
scription that determines the behaviour of a node’s system. In our context the
software also determines the coordination of the activities for each individual
sensor node to maintain a shared state which defines the relevant parts of a local
state of the distributed system. Additionally, the node software can be divided
into two data structures [Kop97, p. 76]: The initialization state (i-state) and
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the history-state (h-state). The i-state is a static data structure that contains
the re-entrant program code and the initialization data and is usually stored
in a Read-Only Memory (ROM). On the other hand, the h-state reflects the
dynamic data structure of the node which can change its content over computa-
tional progress and must be stored in a Random Access Memory (RAM). The
nodes are interconnected by a network called communication system which al-
lows them to communicate among each other respectively the exchange of data.
The state enables the determination of a future output solely on the basis of the
future input and the state the system is in.[MT89]. Further the global state of
a system is defined as the union of the local states of its components [Sch93].

Components. In our work we use the term component to describe a part
of the distributed system which cannot be decomposed for a given level of
abstraction. So a component can be a node, the software running on it, or the
node’s state. In contrast to a component, a system can be decomposed into
subsystems.

2.2 Clocks, Time, and Clock Synchronization

This section introduces concepts and terms used for clock synchronization in
distributed systems and mainly refers to [Kop97, p. 45].

2.2.1 Concepts of Clocks

In distributed systems, the participants often measure events which occur at a
specific point in time. This representation of abstract point in time is based
on the node’s own local clock which is independent and individual. On this
account, the same event can result in different absolute time representations. If
the global tasks and algorithms are only based on the trivial local environmen-
tal measurements of a single node, then this concept is adequate. However,
most applications and algorithms used in sensor networks are based on the
comparison of events measured by many different nodes. In other words every
node must have a local view of the global time so that the measured events on
different nodes can be reordered in a distinct way. For this concept some new
terms must be introduced.

Physical Clock. A physical clock contains a counter and an oscillator mecha-
nism which periodically generates events to increase the counter. This periodic
event is called microtick whereas the duration between any two microticks is
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2 Concepts 2.2 Clocks, Time, and Clock Synchronization

called granularity. The granularity is usually conditioned by the parameters
of the physical oscillator (e.g. oscillator type, frequency, ambient temperature,
etc.) and therefore can lead to a digitalization error in time measurement.
Hereinafter the time of the physical clock k is called microtickk. Further, mi-
crotick i of clock k is denoted by microtickki . The granularity g of clock k is
defined as the nominal number nk of microticks of a reference clock between
two microticks of clock k.

Reference Clock. A reference clock z usually has a very small granularity
gz and can be seen as a granular representation of real-time. Because the
granularity is usually about some femtoseconds (10−15sec), the digitalization
error is negligible. Whenever an event is timestamped by the reference clock
Clock(event), then if z is the single reference clock in the system, z(e) is called
absolutetimestamp of event e.
The concept of reference clock allows the use of simple models, because in
contrast to the dense real-time, the reference clock represents the real-time as
a natural number. This simplifies the ordering of timestamped events to simple
integer arithmetics.

Drift Rate of a Clock. In reality, every clock has a clock drift even if it
is very small. That is, after some time the clock drifts apart from another
clock and is therefore usually denoted with respect to the nominal number nk

of microticks of a reference clock. So the drift of a clock k is determined by
the ratio between the measured duration of a granule of this clock with the
reference clock z and the nominal number of microticks of the reference clock
for that granule. Because the clock drift can change over time, it is calculated
for a distinct granule of clock k between microtick i and microtick i+ 1:

driftki =
z(microtickki+1)− z(microtickki )

nk

Usually, many clocks are relatively accurate and thus have a clock drift very
close to 1. For that reason, another term called drift rate is introduced. The
drift rate of clock k at the instant of microtick i is indicated by ρki and declares
the absolute deviation of the clock drift to the perfect clock:

ρki =

∣∣∣∣z(microtickki+1)− z(microtickki )

nk
− 1

∣∣∣∣
Because typical drift rates are in the range of 10−2 to 10−10s/s, the drift
rate is often quoted in parts per million (ppm). A typical watch crystal has
about 20ppm. That is 20

106 sec/sec and results in an error over a day of about
1.73sec/day.
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Virtual Clocks In our work a clock must have the possibility for adjusting the
frequency and further for changing the state, i.e.,the content of the counting
register. The second condition is usually no problem whereas the change of the
frequency of an oscillator seems to be a problem for so, because many controllers
have generally implemented commercial off-the-shelf (COTS) oscillators so far
which cannot adjust their frequency. A more sophisticated solution could be
the use of Voltage Controlled Crystal Oscillator (VCXO)s. However, this is too
expensive and therefore unthinkable for sensor networks. For this reason, the
problem must be solved at the software level and thus abstracts from hardware
dependent parameters.

A realization of such a virtual clock providing the two adjustment criteria
is based on the concept of macroticks. Therefore, a macrotick is represented
by a tick of the virtual clock and comprises a number of microticks which are
generated by a hardware clock due to an oscillator. The granularity between
two microticks is based on the frequency fosc of this oscillator and the nom-
inal granularity g of the virtual clock is based on the number of comprised
microticks. Thus, a counter increments a hardware register due to this oscilla-
tor and continuously compares this value with g. If the comparison matches,
then the register will be reset to 0 and the hardware raises an interrupt which
corresponds to a macrotick and a software counter is incremented. So the clock
rate-adjustment for a clock k can be simply performed by changing the thresh-
old g of the hardware counter based on an adjustment value, denoted by Hk(t).
The frequency of the virtual clock V C with the hardware clock k based on an
oscillator that has a frequency fosc can be calculated as follows:

fV C(t) =
fosc

g +Hk(t)

Offset. The offset is defined as the time difference of two clocks j and k
having the same granularity at the microtick i measured with respect to the
reference clock z.

offsetjki =
∣∣z(microtickji )− z(microtickki )

∣∣
The same applies for virtual clocks j and k, but is denoted by

Ojk
i =

∣∣z(V T ji )− z(V T ki )
∣∣

Precision. In an ensemble of clocks, the precision defines the maximum offset
between any two clocks during a period of interest. So the precision of an
ensemble with n clocks [1 . . . n] over all interesting microticks i is defined as

Π = max
∀1≤j,k≤n

{offsetjki |∀i}

7
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or with respect to virtual clocks as

Π = max∀1≤j,k≤n{Ojk
i |∀i}.

Accuracy. The accuracy denotes the maximum offset of a given clock with
respect to a reference clock over an interval of interest. So for a clock k with
the reference clock z, the accuracy is defined by

accuracyk = max
∀i
{offsetki }

where i can take in all microticks that are of interest. This equally applies to
virtual clocks and is specified by:

accuracyk = max
∀i
{Ok

i }

2.2.2 Clock Synchronization.

Clock synchronization is an important mechanism in every distributed system.
The need for distributed synchronous clocking can be energy constraints as well
as the global timestamping of events. Particularly sensor networks are often
multi-hop topologies and therefore usually need a decentralized solution for
maintaining synchronization. However, the fact that the clocks have different
clock drifts make it difficult to bring the time of the clocks in close relation
with respect to each together. A general approach is a frequently resynchro-
nization, but this is not applicable for sensore networks as this will increase the
communication and therefore also strongly increases the energy consumption.
The precision is a typical measure for the quality of clock synchronization.

Internal Clock Synchronization. Internal clock synchronization is required
in an ensemble of clocks where the precision must be kept to a minimum.
This is done by mutual resynchronization of the clocks. It should be noted
that this type of synchronization does not necessarily mean synchronization to
real-time, because all clocks can have a similar clock drift and therefore may
be synchronized within a very good precision, but the accuracy with respect
to real-time might be unacceptable. The duration for a period of resynchro-
nization is called resynchronization interval Rint. So after a resynchronization
event, the clocks still run free and may drift apart with a defined maximum
drift rate ρ. Note that ρ does not declare if a clock ticks faster or slower than
the reference clock. At the end of each resynchronization interval, the offset of
the clock with respect to a reference clock can be ±ρ · Rint. Therefore, a new
term called drift offset Γ is introduced with Γ = 2 · ρ · Rint. Assumed that ρ

8
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dedicates the maximum possible drift rate in an ensemble of clocks, then the
drift offset indicates the maximum absolute divergence of any two clocks in this
ensemble during the resynchronization interval Rint.

The Synchronization Condition. Due to unpredictable communication jitter
and clock drift, the synchronization is usually bounded within a small interval
and affects the precision. Further, the different synchronization algorithms are
not perfect and thus are limited again to a small synchronization inaccuracy
called convergence function Θ. All these facts degrades the precision and can
be brought into an equation named synchronization condition.

Θ + Γ ≤ Π

Lower Bounds for Internal Clock Synchronization. Any convergence func-
tion based synchronization algorithm has a lower bound for the optimal maxi-
mum deviation.

Srikanth and Toueg showed that in an ensemble of clocks, the maximum drift
rate achievable by a fault tolerant internal clock synchronization algorithm is
lower bounded to the maximum drift rate of all clocks in that ensemble [ST87].

Another important lower bound was introduced in [LL84] and depends on the
number of clocks N and the communication jitter ε. Assuming the clocks have
no clock drift, the results from Lundelius and Lynch state that an ensemble of
clocks cannot be synchronized to a better precision than

Π = ε ·
(

1− 1

N

)
.

Last but not least, according to [DHS84], any clock synchronization algo-
rithm applied on an ensemble of perfect clocks with no clock drift and for any
communication network graph G, the precision has a lower bound of:

Π ≥ UG
2

UG declares the uncertainty in transmission time of the network graph G and
is defined as the maximum of any minimal delay jitter ε(σ) whereas σ can be
any communication sequence starting with node p and ending with node q. In
more detail

UG = max{min{εG(σ) | ∀σ ∈ S(p, q)} | ∀p, q ∈ G; p 6= q}

9
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whereas S(p, q) contains all possible sequences of nodes starting with p and
ending with q. Further, εG(σ) is referred to as the delay jitter of the commu-
nication sequence σ =< p0, . . . , pn > consisting of nodes pi, for i from 0 to n,
and is calculated as followed:

εG(σ) =
n−1∑
i=0

(εG(pi, pi+1))

Moreover, εG(pi, pi+1) = UG(pi, pi+1) − LG(pi, pi+1) and defines the variation
in transmission and processing time for messages between pi and pi+1. Conse-
quently, UG(pi, pi+1) defines the upper bound and LG(pi, pi+1) the lower bound
on transmission and processing time for messages between pi and pi+1. In ad-
dition to that, the authors proof that there exist algorithms such that for all
communication networks the precision is not greater than the uncertainty UG.

External Clock Synchronization. In an ensemble of clocks, external clock
synchronization always requires one or more reference clocks that are not part
of this ensemble. This kind of synchronization is performed with a periodically
resynchronization of the clocks with respect to the reference clock and thus
keeps the clock within a bounded interval of the reference clock. The quality
of external clock synchronization is measured by the accuracy. Additionally,
external synchronization of an ensemble of clocks with an accuracy A results
in internal synchronization with a precision of at most 2 · A. The converse is
not true.

Clock State Correction vs. Clock Rate Correction. Clock synchronization
usually uses two different approaches to achieve an accurate precision: State
correction and rate correction. For state correction the calculated correction
term is immediately applied to the local clock whereas rate correction modifies
the rate of a node’s clock. Clock rate correction can be implemented either by
changing the number of microticks for some macroticks or in the case of a VCXO
by adjusting the supplied voltage. Moreover, assumed that the rate correction
algorithm is usually not perfect, it might occur that the drift rates of all clocks
continuously increase or decrease in the same way. To avoid this common drift,
the rate correction algorithm should incorporate a common drift compensation.
This is done by an evaluation of the average rate correction terms among all
clocks which should be close to zero.

Principle of Operation of Distributed Clock Synchronization. Every dis-
tributed clock synchronization algorithm usually proceeds in the same way and
can be distinguished in three different phases:
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1. Phase: Collection of clock time values. In order to achieve a good
precision, the algorithm must satisfy that in any synchronization period, every
node obtains the local clock state of the global time counter of all other partic-
ipating nodes. Otherwise, the precision degrades or the synchronization may
completely fail.

2. Phase: Calculation of correction values. Depending on the convergence
function of the synchronization algorithm and on all or some of the collected
clock states, every node calculates a correction value for the local clock rep-
resenting the global time counter. In the case of a correction value greater
than a predefined precision, the synchronization algorithm must ensure that
either the node deactivates itself or the other nodes ignore it until it is again
synchronized.

3. Phase: Clock correction. Lastly, every node has to apply the correction
term from Phase 2 to the local clock.

2.3 Drift of Oscillators

The drift of an oscillator mainly depends on the drift rate of the underlying
technology, e.g., crystal or RC-oscillator. For this reason the next paragraphs
describe the drift of crystals and RC-oscillators in more detail.

Drift of crystal oscillators. According to [Sch88], the drift rate of a crys-
tal oscillator consists of a systematic error and a stochastic error whereas the
systematic error, that determines the nominal drift rate, is constant and the
stochastic error, that is a random drift within a specified interval, changes over
time. This is true for short observation periods in the range of seconds and min-
utes. On the other hand, for longer observations the systematic error changes
similarly to the stochastic error. The stochastic drift rate is usually two orders
of magnitudes smaller than the nominal drift rate and is therefore negligible
[Sch96]. It should be noted that this generally applies to oscillators based
on crystals, but the clock drift also changes due to environmental influences
and mainly depends on the oscillator type and the cut of the crystal. [Vig00]
categorizes the environmental impacts into time-, temperature-, acceleration-,
ionizing radiation-, and other influences. The time can influence the frequency
in a short term (noise) or in a long term (aging). Further, the temperature has
the biggest influence on the crystal’s frequency and is distinguished between
static frequency-temperature effects and dynamic frequency-temperature effects
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(e.g. warm-up, thermal shock). The other categorizations hardly affect the
crystal and are not explained in detail in this work. The short-term stability
of crystal oscillators are discussed in detail in [Sch95].

As mentioned above, the characteristics of a quartz crystal mainly depends on
the angle of cut from a reference. Many different cuts have been developed for
different applications, e.g, AT-, BT-, CT-, DT-, ET-, GT-, MT-, NT- and SC-
cut. AT-cut is the most commonly used of the “high-frequency“ cuts. [Bec56]
states, that the crystal-frequency mainly depends on the temperature and can
be visualized in a frequency-temperature-angle curve which is defined by some
temperature coefficients of higher order whereas for the temperature range
from −60 to +100◦C, temperature coefficients of higher order than three can
be neglected. Additionally, the frequency-temperature behaviour also depends
on the ratio of dimension, order of overtone, shape of plate, and the type
of mounting. Thereafter, under the assumption that the change of the three
temperature coefficients with the angle of orientation is linear, the frequency-
temperature-angle characteristics is dedicated by the expression

f − f0

f0

=
∆f

f0

= a0(θ0) · [T − T0] + b0(θ0) · [T − T0]
2 + c0(θ0) · [T − T0]

3 +(
∂a0(θ)

∂θ
· [T − T0] +

∂b0(θ)

∂θ
· [T − T0]

2 +
∂c0(θ)

∂θ
· [T − T0]

3

)
· (θ − θ0)

where f denotes the measured frequency as a function of the temperature
T and f0 defines the frequency at the arbitrary temperature T0. Further, the
variables a0, b0, and c0 are the corresponding first, second, and third order tem-
perature coefficients whereas ∂a0(θ)

∂θ
, ∂b0(θ)

∂θ
, and ∂c0(θ)

∂θ
incorporate the derivatives

with respect to the angle of the three temperature coefficients. Usually, for an
angle of about 1◦, the derivatives can be neglected.

In the vicinity of a zero angle of orientation, the first order temperature
coefficient a0 is usually very small or zero. In that case two main types of
frequency-temperature behaviour are distinguished: The first type has a domi-
nant second order temperature coefficient c0 whereas b0 is very small. If so the
frequency-temperature curve has a cubic form. Examples are AT-cut and GT-
cut. Most other cuts can be assigned to the second type where the second order
coefficient is predominant. This results in a parabolic frequency-temperature
curve. Typical values for temperature coefficients of different cuts can be found
in [BBL62, Bec56].

It should be noted that several oscillators with integrated temperature com-
pensation have already been developed. For instance a Temperature Compen-
sated Crystal Oscillator (TCXO) is based on a VCXO and therefore can main-
tain a frequency by adjusting the corresponding voltage. Another technique for
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temperature compensation is based on digital processing (e.g. Microcomputer
Compensated Crystal Oscillator (MCXO) and Digital Compensated Crystal
Oscillator (DCXO)). Finally the Oven Controlled Crystal Oscillator (OCXO)
uses an oven for frequency stabilization whereas the oven temperature must
be higher than the maximum ambient temperature expected in the respective
application. Last but not least, the frequency of these special crystals are rel-
atively stable to temperature-variations, but on the other hand require more
implementation size and can increase production costs.

Drift of RC-oscillators. RC-Resonators are generally used for internal-
oscillators in controllers. Because it is cheaper to use the implemented os-
cillator than to extend the controller with an external crystal-oscillator, many
applications for embedded systems make use of the internal RC-oscillator for
generating the system clock. This can result in big problems, especially if the
nodes in a distributed system have to accomplish a distributed clock synchro-
nization based on such imprecise oscillators. However, a clock rate correction
could slightly compensate this problem and thus improve the precision.

Various experiments on integrated uncompensated RC-oscillators [Atm06b,
AP68, HSD+06, Sch95] show, that RC-oscillators are much more sensitive to
temperature and supply-voltage variations than crystal oscillators. A typical
frequency-temperature curve has a maximum at 0◦C and looks like an inverted
parable. From this it follows, that only the second temperature coefficient is
dominant and is in the range of b0 ∼ 2 . . . 3ppm◦C2 . In contrast to crystals with a
dominant second order coefficient (e.g BT-cut), the frequency of RC-oscillators
may increase with a decreasing temperature up to a maximum at about 0◦C
which can be higher than the nominal frequency.

2.4 Firefly Synchronization

The synchronously flashing of thousands of fireflies is a very interesting phe-
nomenon and was observed only by very few people. Because not all fireflies
are able to synchronize their flashes, explorers and naturalists have reported
such an occurrence only in the region stretching from India east and southeast
to the Philippines and New Guinea. According to [BB76], the rhythmically
flashing is reserved to the males whereas the females only respond to these
flashes to begin a courtship. Further it is interesting to know, that different
species have different flashing intervals reaching from 200ms to three seconds
and can synchronize within a precision of about 20ms. It should be noted that
synchronization demands from the participants that they have an oscillating
mechanism to control rhythmic activity which can be described as a resettable
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pacemaker model. In detail, this mechanism is based on neural control systems
which all depend on the charging and discharging of the capacitive membranes
of the nerve cells. So in the case the charge reaches a specific level named trig-
gering level, the firefly flashes and the membranes will be quickly discharged
to a basal level. Additionally, the charge is hereinafter called phase. Differ-
ent models inspired by such a biological synchronization were proposed in the
last decades. The most important one are the phase-advance respectively the
phase-delay model from Buck, the Pulse-coupled Biological Oscillators (PCO)
model from Mirollo and Strogatz (MaS) (also called MaS model), and the
RFA model. Other models are similar, but make different assumptions on the
coupling strength and the propagation delay in wireless communication (e.g.,
[Abb90], [Ger96]).

J. and E. Buck also discussed different hypotheses for the reason of syn-
chronously flashing. For instance, they proposed the beacon hypothesis stating
that the combined light makes the beacon larger and stronger for attracting
males and females from all directions which allows the males to find more fe-
males for a mating than they could by searching individually. However, this
differs from Darwin’s concept of evolution by natural selection of the fittest.

In [Buc88], J. Buck presents two different types of mechanisms used by such
insects to synchronize with respect to each other. The first strategy is called
phase-advance synchronization and the second one refers to as phase-delay syn-
chronization. A simple simulation of both strategies implemented as a Java-
Applet can be found at [Wil98].

Phase-Advance Synchronization Model This type of synchronization is
based on the fact that simultaneously flashing is due to an alternate discharge
and recovery of a battery-like mechanism. That means that the excitation of
the insect linearly increases towards a threshold and then the firefly fires. Fur-
ther, if an insect is stimulated near the time it would normally flash, then the
it resets its phase and therefore flashes immediately. Thus, the flash periods
are destined from the insect with the shortest period. A firefly species using
this strategy is the common known American Photinus pyralis and is usually
not observed to synchronize. The reason for this could be the irregular flash-
ing rhythm. Compared to other species, an individual male of the Photinus
pyralis has a cycle-to-cycle variability (measured in standard deviation / mean
period) of about 1/20 whereas other species like Pteroptyx effulgens have a
smaller variability of about 1/200.

Phase-Delay Synchronization Model In contrast to the phase-advance strat-
egy, the phase-delay synchronization scheme does not advance the charge to the

14



2 Concepts 2.4 Firefly Synchronization

triggering level but resets it to the basal level and, therefore, the firefly restarts
and runs for its full normal duration before reaching the triggering level. This
enables the insects to duplicate a wider range of flashing rhythms. In addi-
tion to that, this type of synchrony tends to be more regular and also achieves
a better flash coherence due to the unneeded resetting in particular periods
whereas the phase-advance strategy is bounded to the latency in triggering.
An example of a species using this scheme is the Pteroptyx effulgens.

The fireflies are not the only miracle of nature which are able to mutually
synchronize. Other similar oscillatory phenomena can be observed on a few
kinds of crickets that chirp in synchrony or in some instance of human be-
haviour such as the spontaneously synchronized clapping in concert crowds.
Moreover, it synchronization does not necessarily mean that the fireflies or
other biological oscillators fire at the same time. Therefore, three different
levels of synchronization were introduced and are described below.

Synchrony. Synchrony means that the oscillators fire in unison. In real popula-
tions, synchrony usually never occurs, because the oscillators often devi-
ate from a nominal frequency. However, if the precision of the firing times
are small compared to the synchronization interval, then a population of
pulse-coupled oscillators can be seen to be in synchrony. For instance,
synchrony appears in the firing of peacemaker cells, synchronous flashing
of fireflies, or chorusing of crickets. According to [Pes75], synchrony is a
cooperative effect between dissipation and coupling.

Phase locking. Phase locking occurs, if the phase difference between several
oscillators is non-zero and constant. Therefore, they may not fire in
unison. This weaker definition of synchronization can be found in some
oscillator populations based on randomly distributed natural frequencies.

Frequency locking. Frequency locking is defined as a weak synchronization
where the oscillators have the same average frequency but a varying phase
difference to each other.

2.4.1 Mirollo and Strogatz (MaS) Model

In [MS90], Mirollo and Strogatz have described the synchronization behaviour
of fireflies as a model of PCO. The model is a generalization of the leaky
integrate-and-fire model of the cardiac pacemaker model from Peskin stated in
[Pes75] and is based on the following assumptions:

1. The oscillators have identical dynamics (e.g. same period).

2. Each oscillator is coupled to all the others.
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The MaS model is similar to the phase-advance synchronization model from
Buck described in 2.4 but with the difference that MaS assume a concave-
down excitation towards the threshold in contrast to Bucks model of a linear
excitation. In detail, the model assumes that every oscillator is characterized by
a state variable x = f(φ(t)) which increases according to a phase variable φ(t)
toward a threshold at xth = 1. In the case x equals xth, the oscillator fires and
resets the state to x = 0. The phase φ is a variable which determines the course
of time within an oscillator interval. Therefore, φ is a proportional function of
the real-time t, but persists in the range from 0 to 1. For example, in the case
of a cycle period with a duration of T = 10s, then φ(t) maps to φ(t) = (t mod T )

T

and has no dimension. Consequently, the function f : [0, 1]− > [0, 1] is a one-
to-one mapping from the phase to the state of the oscillator with the same value
domain, but with the important characteristics that f is smooth, monotonic
increasing, and concave down. Based on this conditions, MaS have calculated
a general function f(φ) whereas the form of the curve depends on a parameter
named dissipation factor, denoted by b:

f(φ) =
1

b
· ln(1 + [eb − 1] · φ) with b > 0

Figure 2.1 shows the function f for different dissipation parameters b. Note
that b = 0 corresponds to the identity map for which a synchronization will
not be achieved.

Figure 2.1: The state function dependent on different dissipation factors.
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To satisfy the second assumption of coupling, every oscillator receiving a
firing event has to advance its state by a constant value. This constant is
named pulse strength and denoted by ε. Because of the concave down form
of the function, the constant addition in the state domain results in a variable
phase increment. Therefore, the coupling strength between the oscillators is
only determined by the dissipation factor b and the pulse strength ε. The new
phase is calculated through the less of 1 and the result of the firing function
g(ε+ f(φ)) with g = f−1. That is

φnew(φ) = min(1, g(ε+ f(φ)))

with 0 < ε < 1 and g(u) =
ebu − 1

eb − 1
.

This ensures that an oscillator reacts more strongly to an event that occurs
later in its phase. It should be noted that the state function f is not linear.
Nevertheless, the Phase Response Curve (PRC) denoted by φnew(φ) is against
one’s expectations linear. Mirollo and Strogatz have also proved that the time
until the network achieves synchronicity is proportional to the product b · ε
and also depends on the initial phase of the oscillators. An example of such a
phase shift is demonstrated in Figure 2.2. This graph shows the state of two
oscillators φA and φB with a typical state function just before oscillator B has
fired. φAnew denotes the state after the phase shift caused by the firing of B.

On a final note, the major result from MaS is that under the assumptions
mentioned above, a set of oscillators with any initial phase will always achieve
synchronicity. Additionally, Lucarelli and Wang proved in [LW04], that this
model still achieves synchronicity when the communication topology is time
varying. Consequently, assumption two can be neglected. This is of particular
importance for sensor networks which are often based on multi-hop topologies.
However, many prior reports have stated that the synchronization error in-
creases with every hop. For instance, the authors from [EGE02] show that the
synchronization error in a multi-hop network based on a Reference-Broadcast
Synchronization (RBS) linearly increases due to the number of hops. The same
applies on such a network topology based on the MaS synchronization model
as presented in this work. Though, the results from [HS06] show that there
still exists a solution which reduces the synchronization error over several hops.
This improvement is based on spatial averaging. Therefore, they assume that
each node has many neighbors and hence receives more information for syn-
chronization. Based on the law of large numbers, the authors prove that the
superposition of N received pulses (N → ∞) eliminates the random errors in
transmission and thus improves scalability.

17



2 Concepts 2.4 Firefly Synchronization

Figure 2.2: The graph shows a phase shift caused by a firing event.

2.4.2 The RFA Model

The RFA was introduced in [WATP+05] and is based on the MaS model, but
with the difference that it is more appropriate for the implementation in wireless
networks. Some assumptions resulting from the theoretical MaS model are
listed below and makes it difficult for a practical application.

1. The oscillators have identical dynamics (e.g. same period).

2. Nodes can instantaneously fire.

3. Every firing event must be observed immediately (no loss).

4. All computations are performed perfectly and instantaneously.

The most problematic one is assumption three, because in reality the firing
is implemented as a broadcast message which usually has an unpredictable
delay mainly caused by the channel contention prior to the transmission. The
other assumptions are not so problematic. For example, the nodes are based on
oscillators which generally have a small but measureable drift. Next, the limits
in floating point arithmetics result in inexact computations and finally the loss
of messages in wireless networks due to influence problems or the varying link
quality can not be avoided.

For this reason, the RFA model controls the unpredictable message delay via
MAC-layer timestamping, so that the receiver has knowledge about the MAC
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delay and consequently is able to determine the correct firing time. In addition
to that, the RFA model is based on an explicitly added random transmission
delay between 0 and a constant D at the application level, called message
staggering delay. The message staggering delay should avoid message collisions,
in the case if many synchronized nodes want to send simultaneously.

In contrast to the MaS model, the RFA model does not immediately react
on an observed firing event. Instead it stores the corrected timestamp of all
received firing events in a queue. Then, if the phase of a node reaches the
end, it computes the new start phase based on the content of the queue. The
computation is the same as in the MaS model. As a result, a node seems to
react instantaneously, but to the data from the last period.

Computation of the start phase. The computation of the new phase is per-
formed at the end of each period and is specified in Algorithm 1. The algorithm
uses the function described in 2.4.1 to get the overall jump which corresponds
to the start phase for the next period. Therefore, the instantaneous jump ∆(φ)
for each timestamp stored in the queue is calculated whereas ∆(φ) declares the
difference between the old and the new phase:

∆(φ) = min(1, g(ε+ f(φ)))− φ

Further, all calculated phase jumps must cumulatively be added to all the
other timestamps stored in the queue. This ensures that the overall phase
jump corresponds to an instantaneously phase shift.

Algorithm 1 Calculation of the start phase.

1: overall phasejump = 0
2: while queue not empty do
3: tStamp = next element from queue {get next timestamp}
4: phasejump = ∆(tStamp+ overall phasejump)
5: overall phasejump = overall phasejump+ phasejump
6: end while
7: set current phase to overall phasejump

2.5 The Time-Triggered Protocol (TTP)

Many communication systems are usually based on an event-triggered ap-
proach. However, this concept is not appropriate for real-time systems, es-
pecially if fault tolerance is inevitable. For instance, event-triggered systems
are not aimed at coping with the demands for hard real-time systems like
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composability, predictability, guaranteed timeliness, and determinism. For this
reason, the TTP [Kop97] concept has been designed at the Technische Uni-
versit”at Wien and is explained because of its use as an evaluation protocol
in this work. The TTP is a protocol used for distributed real-time systems in
safety critical applications whereas two variants for different requirements were
developed. First the low-cost TTP/A [EHK+05] version for field-bus applica-
tions and secondly the more sophisticated TTP/C derivative for fault tolerant
intra-cluster communication systems. The following sections mainly focus on
the TTP/A architecture, but the mechanisms described here are common for
both derivatives of TTP.

2.5.1 Overview of TTP/A

As described above, TTP/A is a time-triggered protocol for field-bus applica-
tions, whereas the purpose is to interconnect low-cost smart transducer nodes
providing guaranteed timeliness for hard real-time communication. This type
of TTP is based on the Master/Slave principle. Therefore, a TTP cluster must
be made up of at least one master node and several slave nodes, whereas the
other masters are shadow masters which take-over if the active master fails.
Additionally, every master can also serve as a gateway node.

A smart transducer is a notion for a single electronic unit, which is com-
posed of a sensor/actuator and a low-cost microcontroller, that contains the
hardware (e.g. processor, memory, network controller) and software for the
communication interface. Because such transducers are widespread and often
have different vendors and capabilities, the communication interface must be
generic for a better composability in networks. However, in conjunction with
TTP/A, a transducer must support some standard functionalities to transmit
data in a temporally deterministic manner and in a standard data format. The
basic services of the TTP/A protocol are standardized by the OMG Smart
Transducer Standard.

2.5.2 Principles of Operation

TTP/A relies on the TDMA scheme to achieve a predictable time behaviour in
a cluster comprised of several nodes which are controlled by an active master.
Therefore, communication is organized in rounds which are independent from
each other. Each round is divided into a number of slots which are statically
assigned to communication activities of the different nodes. Such an activity
can be the sending of a message, the receiving of a message or task invocation.
The slot associations are different for each node and are further described by
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an entry in the Round Description List (RODL) in the file-system of the sender
and the receiver(s).

2.5.3 The Interface File System (IFS)

The IFS provides a basis for storing and accessing local data of a node. Fur-
ther, it serves as a source respectively sink for communication data and as an
interface to the application. Every TTP/A node has some special files listed
below, but can have further files with different access rights for the application.

The Documentation File The documentation file is the only file which must
implemented in every TTP/A node and is set read only. It contains the unique
physical name of the node (e.g. MAC address) and therefore serves as an
identifier.

The Configuration File The configuration file contains the cluster name and
the logical name of a node which is assigned by the TTP/A protocol. Further,
it stores the current status which can be: Not synchronized (startup), passive
(no send operation), not baptized, passive lock (no send operation), active, and
error. This is also the file location that holds the current round number, the
epoch counter, and the slot counter.

The Membership File This file is only needed in master or gateway nodes. It
contains two membership vectors, whereas the index of each bit of the vectors
represents the logical name of a node. The first vector contains all slaves
which have sent a live-sign and the second one contains all slaves which have
responded to the most recent master-slave operation.

The RODL file The RODL file is the most important file in the TTP/A pro-
tocol. It defines the actions which have to be performed in the particular round.
There exist three different types of TTP/A rounds described below. Such a file
contains several entries which define the type of operation for a corresponding
slot. Such operation types can be read, write, and execute. For read and write
operation, the entry also contains the location to the communication data in
the IFS. In case of an execute operation, the entry must contain the parameters
to the task descriptor.
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Multi-Partner Rounds This is the standard round type in TTP/A and is used
to exchange data between several nodes. The multi-partner rounds are stati-
cally defined by the user and depend on the application. They are periodically
scheduled by the master.

Master-Slave Rounds The master-slave round may be used for debugging to
read data from an IFS file, write data to an IFS file, or execute a task stored
in an IFS file on a slave. Thus, a master-slave round is distinguished in a
master-slave address (MSA) and master-slave data (MSD) round. The MSA
round is therefore initiated by the master and specifies the destination node,
the operation and the location of the communication data within the addressed
node. Next, the MSD round can be regarded as a slave response to a MSA
request. It contains the communication data which is transmitted between the
master and the slave.

Broadcast Rounds A broadcast round is a master-slave round but with the
difference that the name of the addressed node is a special broadcast address.
Consequently, this round is received by all nodes and therefore can only con-
tain a write or an execute operation. A typical execute operation is the sleep
command which puts the complete TTP/A cluster into a sleep mode.

The Round Sequence (ROSE) file Because a TTP/A node can have differ-
ent rounds, there must be a mechanism which defines the execution order for
them. For this reason, the ROSE file is reserved to the master and specifies
the sequence in which the rounds are scheduled.

2.6 The ZigBee Protocol

ZigBee [All06] is a standard for Low-rate Wireless Personal Area Network (LR-
WPAN)s and has been ratified in late 2004 under IEEE 802.15.4 Wireless
Networking Standard. The reason for this development was, that other wireless
standards were not suitable for building automation and industrial control,
because they needed lower cost, better latency, and lower power consumption
[EP03]. The ZigBee protocol is similar to Bluetooth butm simpler, has a lower
data rate and a very low power consumption. Thus, these characteristics make
it possible that a node on a ZigBee network should be able to run several
months to two years on just two AA batteries and therefore is best suited for
embedded applications in consumer electronics, home and building automation,
industrial control, sensor networks, and many others.
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2.6.1 ZigBee Architecture

The ZigBee architecture is based on the standard Open System Interconnection
(OSI) seven-layer model, but defines only the relevant layers. Therefore, ZigBee
specifies the application and Network (NWK) layer and builds on the Physical
(PHY) layer containing the radio frequency (RF) transceiver and the MAC
layer from the IEEE 802.15.4-2003 [IEE03] standard. The purpose is, that
devices from different vendors based on this standard will enable interoperable,
low-cost, and highly usable products. The application layer is comprised of the
Application Support (APS) sub-layer, the Application Framework (AF) profile,
the ZigBee Device Object (ZDO)s, and the manufacturer-defined application
objects. A simplified relation between these layers is depicted in the Figure 2.3.

Figure 2.3: ZigBee architecture.

2.6.2 ZigBee Components

A ZigBee System is composed of a number of components which have differ-
ent features. Because of different constraints regarding implementation costs,
memory requirements, and other hardware resources, the ZigBee Physical De-
vice type based on IEEE 802.15.4 is distinguished in three Logical Device types.

Generally, IEEE 802.15.4 provides the implementation of two different Phys-
ical Device types. The first one is the Full-function Device (FFD) and the
second type is the Reduced-function Device (RFD). Every IEEE 802.15.4 net-
work requires at least one FFD, which acts as a network coordinator. As listed
in the Table 2.1 below, an RFD is implemented with minimum resources and
therefore improves power consumption and reduces implementation size and
costs [Kin03]. In contrast to FFDs which can also serve as a link coordinator

23



2 Concepts 2.6 The ZigBee Protocol

and is generally line powered, an RFD component is usually battery-powered
and can only talk to an FFD.

Reduced Function Device Full Function Device

Limited to star topology Can function in any topology
Can only talk to an FFD Can talk to RFDs and FFDs

Can not become a network coordinator Can become a network coordinator
Very simple implementation Can become a coordinator.

Table 2.1: ZigBee physical device types.

As mentioned above, ZigBee distinguishes the Physical Device types (RFD
or FFD) into three different Logical Device types, which are described in the
following paragraphs:

ZigBee Coordinator (ZC). Every network must contain exactly one ZC
which is responsible for starting the network and therefore for initiating and
maintaining the devices. The coordinator selects the frequency to be used by
the network and associates the devices with a logical address. It also provides
message routing, security management, and other services. Only an FFD can
be a Personal Area Network (PAN) coordinator.

ZigBee Router (ZR). ZigBee Router (ZR)s are used for moving data and
control messages through the network using a hierarchical routing strategy and
thus can act as an intermediate router. They are used to extend a network or
to combine several ZigBee clusters. Only an FFD can be a ZR.

ZigBee End Device (ZED). The end devices directly communicate with a
ZigBee coordinator and are used for applications which do not need to send
large amounts of data. They have a reduced functionality and therefore min-
imizes memory requirements and simplifies the implementation. Both FFDs
and RFDs can act as a ZED.

2.6.3 Network Topologies

ZigBees’s network layer supports three network topologies which are pictured
in the Figure 2.4.
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Figure 2.4: Topology models.

Star Topology. This network topology contains exactly one ZigBee coordina-
tor, which establishes the connection between several ZEDs. In contrast to the
coordinator, the end devices are usually battery-powered. Hence, this topology
may be used in applications with constraints on power consumption such as
home automation, toys and games, or personal computer peripherals. During
each start of the coordinator and therefore of a network, the coordinator scans
for other networks and then chooses a PAN identifier which is not currently
used by others. Thus, although several star topologies may be in the radio
range of each other, they are able to operate independently.

Mesh Topology. The mesh topology, also known as peer-to-peer topology,
improves reliability and scalability by multipath routing and therefore can be
ad-hoc, self-organizing, and self-healing. It contains again a single ZigBee coor-
dinator and typically allows full peer-to-peer communication. Moreover, mes-
sages can also be routed through multiple hops which makes this topology
appropriate for wireless sensor networks. Other applications that benefit from
this may be industrial control and monitoring, or asset and inventory track-
ing. In such a topology, the ZigBee coordinator is responsible for starting the
network. The network extension is therefore done through the use of ZRs and
ZEDs.

Cluster Tree Topology A cluster tree topology usually consists a number of
FFDs which build up a tree topology wheres a single ZigBee coordinator forms
the root of this tree. Moreover, every FFD may be connected together with
several ZRs or ZEDs and thus forms a cluster. In other words, the end devices
correspond to the leaves of the cluster tree. In addition to that, every router
can provide synchronization service to the neighboring devices.

Because the ZigBee coordinator forms the first cluster, it is also named Clus-
ter Head (CLH) and provides a Cluster Identifier (CID), an unused PAN iden-
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tifier, and the broadcasting of beacon frames. A CLH may add neighboring
devices and can instruct a ZigBee router to become the CLH of a new cluster.
This enables an increased coverage area at the cost of communication latency.

2.6.4 IEEE 802.15.4 PHY

According to [GNC+01, CGH+02], the physical layer of IEEE 802.15.4 offers
two PHY options: The 2.4 GHz PHY and the 868/915 MHz PHY. Both are
based on direct sequence spread spectrum (DSSS) methods and share the same
packet structure. This allows a simpler and cheaper IC implementation. The
2.4 GHz PHY operates in the 2.4 GHz ISM band and therefore offers nearly
worldwide availability. However, many other standards have also chosen this
band and thus may be affected by the interaction of incompatible services
operating in the same band. Because many LR-WPAN applications are not
based on mobility, the IEEE 802.15.4 task group has also added a second PHY
option which is a combination of the 868 MHz band in Europe, the 902 MHz
band in Australia, and the 915 MHz band in the United States. The close
frequency relation of these bands makes the use of similar hardware possible and
thus lowers the production costs. Other advantages of the second PHY option
are lower power consumption and the avoidance of the interference problem in
the 2.4 GHz ISM band.

Compared to the 868/915 MHz PHY, the 2.4 GHz PHY is based on a higher-
order modulation scheme, in which each data symbol represents several bits.
For this reason, the 2.4 GHz PHY has a higher transmission rate of 250 kbps,
while 868/915 MHz PHY offers 20 kbps for the 868 MHz band and 40 kbps the
915 MHz band. In comparison, every PHY option has its strengths and are
stated in the Table 2.2.

868/915 MHz PHY 2.4 GHz PHY

better sensitivity higher throughput
larger coverage area lower latency

fewer interference problems lower duty cycle

Table 2.2: Strengths of both PHY options.

The previous described three bands are subdivided into twenty-seven fre-
quency channels. Thus the 868/915 MHz PHY offers a single channel between
868.0 and 868.6 MHz, and 10 channels between 902.0 and 928.0 MHz whereas
the 2.4 GHz PHY offers 16 channels between 2.4 and 2.4835 GHz. Because of
the interference problems with other applications based on the 2.4 GHz band,
the standard also supports dynamic channel selection. However, the specific
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channel selection is reserved to the network layer. The characteristics of the
two PHY options are summarized in Table 2.3.

PHY Channel
Frequency Data parameters

band Bit rate
(kbps)

Symbol rate
(kbaud)

Modulation

868 MHz 0 868-868.6 MHz 20 20 BPSK
915 MHz 1-11 902-928 MHz 40 40 BPSK
2.4 GHz 12-27 2.4-2.4835 GHz 250 62.5 O-QPSK

Table 2.3: Frequency bands and data rates.

Packet structure. As mentioned above, both PHYs share the same packet
structure as depicted in Figure 2.5. A packet at the physical layer is named
Physical Protocol Data Unit (PPDU) and contains a preamble, a start of packet
delimiter, a PHY header and the PHY Service Data Init (PSDU). The preamble
together with the delimiter forms a synchronization header and the PHY header
indicates the packet length. Because only seven bits are used to specify the
payload length in bytes, a PSDU can have a maximum length of 127 bytes.
Therefore, the maximum possible packet duration are 53.2 ms for the 868 MHz
band, 26.6 ms for the 915 MHz band, and 4.25 ms for the 2.4 GHz band.

Preamble
Start of packet

delimiter

PHY header PHY service data unit (PSDU)

PHY protocol data unit (PPDU)

Synchronization headerPHY
layer

1byte 1byte < 128 byte4 byte

Figure 2.5: IEEE 802.15.4 PHY packet structure.

Sensitivity and range. In order to support low-cost implementation, the
IEEE 802.15.4 standard specifies a receiver sensitivity of −85 dBm for 2.4 GHz
and −92 dBm for 868/915 MHz PHY. However, the achievable range does not
only depend on the receiver’s sensitivity, but also on the sender’s transmitting
power. Therefore, the standard also specifies to transmit at least 1 mW. An-
other important aspect is the control of the transmitting power, because this
could improve reliability and power consumption. For instance, the quality of
the transmission is continuously observed and the transmitter power is reduced
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as far as possible, so that the receiver can still hear the sender. Thus, this re-
duces the problem with interfering networks operating in the same frequency
channel. Furthermore, a transmitting power of 1 mW allows a radio range of
about 10 to 20 metres but can be up to 100 metres.

2.6.5 IEEE 802.15.4 MAC

According to [IEE90], the IEEE 802 group has split the data link layer into two
sublayers, the MAC layer and the Logical Link Control (LLC) layer. The data
link layer usually provides functionalities to transfer data between several net-
work entities. Furthermore, it is responsible for error detection and correction
that may occur in the physical layer. The LLC is standardized in [IEE98] and
usually provides flow control, acknowledgement, and error recovery. Compared
to LLC, the MAC layer is closer to the hardware and determines who is allowed
to access the medium. As shown in [IEE03], the IEEE 802.15.4 MAC sublayer
is responsible for the following tasks:

• Association and disassociation

• Acknowledged frame delivery

• Channel access mechanisms

• Frame validation

• Guaranteed time slot management

• Beacon management

• Security management

The MAC sublayer provides two services to the upper layers, which can be
accessed through two Service Access Point (SAP)s: The MAC data service
and the MAC management service. The MAC data service is responsible for
the reception and transmission of MAC Protocol Data Units (MPDU)s and
the MAC management service provides several service primitives to handle the
above mentioned tasks.

The general MAC frame format. The MAC frame is named MPDU and is
enclosed in the PSDU. An MPDU frame has a maximum packet size of 127
bytes and is composed of the MAC Header (MHR), the MAC Service Data
Unit (MSDU), and the MAC Footer (MFR). Regarding to the Figure 2.6, the
MHR contains a frame control field, a sequence number field, and an address
information field. The control field indicates the type of MAC frame (e.g.
beacon frame, data frame, acknowledgment frame, MAC command frame) and
further specifies the format of the address field, i.e., 16 bit short address or 64
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bit extended address. Therefore, the size of the address field may vary. The
sequence number is used for the acknowledgment to provide a reliable link and
the Frame Check Sequence (FCS) field helps verify the integrity of the MAC
frame via 16-bit ITU-T Cyclic Redundancy Check (CRC). Consequently, 102
bytes are left for the MSDU and can be used for user data in the upper layers.

The 64 bit extended address is long enough to assign every device in the
world a unique number. But if the communication is only based on this address
type, then this will result in much overhead and is not beneficial. Because a
PAN comprises by far fewer devices than can be addressed via 64 bit, the
short address type was introduced and enables a maximum amount of 65536
participants. The short address will be assigned from the PAN coordinator
through the association process.

Preamble
Start of packet

delimiter

PHY header PHY service data unit (PSDU)

PHY protocol data unit (PPDU)

Synchronization headerPHY
layer

MAC
sublayer

Frame length MPDU

Frame
control

Sequence
number

Address
Information Data Payload FCS

1byte 1byte < 128 byte4 byte

2 byte 1 byte 0 ... 20 byte n byte 2 byte

MAC header (MHR) MAC service data unit (MSDU) MAC footer

Figure 2.6: The IEEE 802.15.4 MAC frame format.

Channel access mechanisms. The MAC standard uses two types of channel
access mechanisms which depend on the use of beacons. Both are based on the
Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) medium
access mechanism and therefore are contention based. The only difference is
that the first mechanism uses an unslotted variant and the second one a slot-
ted variant of CSMA/CA. Networks with beacons use the slotted CSMA/CA
mechanism and are usually deployed in low-latency devices, but a device can
also choose not to use beacons for normal transfer and thus use the unslotted
variant.

Superframe structure. To take advantage of the beacon scheme, IEEE
802.15.4 has the option to use a superframe structure which allows the PAN
coordinator to allocate time-slots to devices with time critical data. The su-
perframe structure is bounded by superframe beacons which are transmitted
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in predetermined intervals by the coordinator. These intervals are divided into
16 equally sized slots, while the first slot of each superframe contains a special
beacon frame. This beacon frame describes the structure of the superframe.
The interval between two superframe beacons can be 15 ms up to 245 s. A su-
perframe can also have an active and an inactive portion which can be used to
save energy. In the active period each device can transmit at any time during
a slot, but must finish before the next superframe beacon. The channel access
mechanism in each slot is based on the slotted CSMA/CA strategy. For this
reason the active period is also called Contention Access Period (CAP).

However, some applications may require guaranteed bandwidth for dedicated
devices. For this reason, the standard also supports the use of Guaranteed Time
Slot (GTS)s at the end of each active superframe. This results in a contention-
free channel access mechanism. The portions used for GTSs together form a
Contention Free Period (CFP). This mechanism is visualized in Figure 2.7. It
should be noted that a contention based transmission should end before the
start of a CFP.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

GTS GTS

Contention Access Period Contention Free Period

inactive

Beacon Beacon

Figure 2.7: Superframe structure with GTSs.

CSMA/CA. In networks which does not use beacons, IEEE 802.15.4 de-
termines the use of a contention-based channel access mechanism named
CSMA/CA. The behaviour of the CSMA/CA algorithm is generally described
with three parameters: The Number of Backoff Periods (NB), the Contention
Window (CW) length, and the Backoff Exponent (BE).

NB is initialized to 0 before a new transmission attempts and is incremented
each time a backoff was required while attempting this transmission.

The CW length is defined in number of backoff periods. A transmission will
only be started if the channel is clear during the contention window. The CW
is only used in the slotted variant of the CSMA/CA algorithm.

BE is the backoff exponent and defines the number of backoff periods a
device has to wait before a channel assessment can be started. The MAC
layer features different variables for the implemented CSMA/CA mechanism,
i.e., the Minimum Backoff Exponent (macMinBE) and the Maximum Backoff
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Exponent (macMaxCSMABackoffs). macMinBE defines the minimum number
of backoff exponents and macMaxCSMABackoffs declares the maximum value
of the backoff exponent before the algorithm will terminate with a channel
access failure. Furthermore if macMinBE is set to 0, no collision avoidance will
be performed during the first iteration of the algorithm. Although the receiver
is enabled during the channel assessment, the device discards any received
frame.

If a frame should be sent, the algorithm first waits for a random time de-
termined by a random number of backoff periods from 0 to 2BE − 1 and then
performs a Clear Channel Assessment (CCA). In the case the channel is free,
the transmission will be started. Otherwise if the channel is assessed to be
busy, both NB and BE are incremented by one. If the value of NB is less
than or equal macMaxCSMABackoffs, then the algorithm waits again for a
random time. Otherwise, if NB is greater than macMaxCSMABackoffs, then
the algorithm terminates with a channel access failure.

Data transfer model. The MAC sublayer from IEEE 802.15.4 distinguishes
three types of data transfer: The data transfer to a coordinator, the data
transfer from a coordinator, and the peer-to-peer data transfer. In contrast to
a star topology, a peer-to-peer topology may use all three transactions whereas a
star topology will not make use of the peer-to-per data transfer model. It should
be noted that the transfer mechanisms also depend on the use of beacons.

Data transfer to a coordinator. This scheme is used to transfer data from
a device to the coordinator. In case of a network with the use of beacons, the
device must first wait for a network beacon. If so, the device transmits its
data frame using the slotted version of CSMA/CA. Afterwards, if the coor-
dinator successfully received the frame, it sends an optional acknowledgment.
The mechanism for a network without the use of beacons is similar, but with
the addition that the device uses slotted CSMA/CA and it does not have to
listen for a beacon before transmitting the data. Both principles are shown in
Figure 2.8.

Data transfer from a coordinator. If a device requests data from the coor-
dinator, then this mechanism will be applied. In a network using beacons, the
coordinator must first indicate in a beacon that it is ready to send data to a
device. Therefore, the device listens to the medium and if it receives such a
beacon, then the device responds with a data request packet. Afterwards, the
coordinator is allowed to send the pending message. In addition to that, all
transactions are acknowledged. By contrast, a network without beacons uses
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seq: data transfer to a coordinator

Coordinator
Network
Device

Beacon

opt  [beacon-enabled
        network]

Data

Acknowledgment

opt

Figure 2.8: Communication to a coordinator.

unslotted CSMA/CA and the coordinator stores all messages and continuously
waits for a data request from a device without any beacon messages. The
transfer model for both variants is depicted in Figure 2.9.

Peer-to-peer data transfer. This model is used if a device in a network wants
to communicate with each other and can be either performed by synchronized or
an unsynchronized scheme. If no synchronization is performed, then the devices
continously receive messages based on unslotted CSMA/CA. The synchronized
scheme is not provided in the standard and may be implemented by the upper
layers.

Robustness. The LR-WPAN standard supports some mechanisms to ensure
robustness in communication. Theses mechanisms are the CSMA/CA scheme,
frame acknowledgment, and data verification via a CRC strategy.

Security. The security mechanism in this standard includes the ability to
maintain an Access Control List (ACL) and the use of symmetric cryptography
to protect transmitted frames. The ability to use these functions are determined
at the upper layers.
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Coordinator
Network
Device

Beacon

opt  [beacon-enabled
        network]

Data Request

Acknowledgment

Data

Acknowledgment

seq: data transfer from a coordinator

Figure 2.9: Communication from a coordinator.
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3 Related Work

3.1 Spontaneous Synchronization in Multi-hop
Embedded Sensor Networks

The work from A. Bletsas and A. Lippman [BL05] demonstrates a Firefly in-
spired distributed time synchronization technique for multi-hop sensor networks
using nearest neighbor communication. The goal was to synchronize speakers,
so that they play the same music at the same time. The nodes were pro-
grammed to have a period of about 13 seconds and a clock resolution of 5.9
ms. They measured the synchronization error as a function of network diameter
and communication overhead. The synchronization error err(t) = Ci(t)−Cj(t)
was defined to be the difference between the local time of the edge nodes at the
same instant. Some of the results are denoted in Table 3.1. It is interesting to
know that the measurements show an average absolute synchronization error
|err(t)| in the order of a few milliseconds.

Network diameter
(maximum number of hops)

Average absolute
synchronization error

1 v 4 ms
2 v 10 ms
3 v 4 ms
4 v 2 ms
5 v 6 ms

Table 3.1: Synchronization error vs. network diameter.

The seminal result of this work is that in a real-world implementation, the
absolute synchronization error does not necessarily depend on the network
diameter, as it was quoted in many prior reports which show that in a multi-hop
network the synchronization error linearly increases with the number of nodes.
But all these reports are based on simulations whereas the work of Bletsas and
Lippman presents the first implementation in a real-world embedded network.
They have studdied this phenomenon and came to the conclusion that the
synchronization error does not increase lineary with the network diameter.
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Instead, the error mainly depends on the frequency skew1 distribution of the
node oscillators. Consequently, if the clock drift with respect to real-time at
the receiver node is lesser than the drift of the sender, then the error due to
the sender’s clock drift, the dominant transmission time, and the processing
time might decrease. Otherwise, if the frequency skew between the sender and
receiver is positive, the error may increase.

3.2 A Scalable Synchronization Protocol

In [HS05], the authors present the emulation of the PCO model from Mirollo
and Strogatz based on the narrow pulse characteristics of Ultra Wideband
(UWB) systems. The experiments in the work of Scaglione show that in an
all-to-all topology the number of necessary periods to achieve synchronicity
decreases with an increasing number of nodes and/or a stronger coupling ε.
Further, they observed that in an ensemble of N nodes, there exist a phase
transition at the point ε · N = 1, so that synchrony is achieved immediately.
However, this is not true for a multi-hop scenario where the number of nec-
essary periods for synchronization is approximately O(log(N)). Further, they
described the relationship between energy efficiency and the time to synchrony.
Additionally, they assumed that if a node fires, it cannot receive any other firing
pulses for a short time. They stated that this avoids an infinite excitation be-
tween close-by nodes and that this phenomenon can also be observed in nature.
For instance, this short duration also exists in spiking neurons and is called re-
fractory period. In detail, the effect of the infinite excitation is caused by the
propagation delay between the oscillators. For example, consider a network
with an all-to-all coupling comprises a number of N nodes which are initially
synchronized. If the coupling strength ε is chosen to be relatively large, then
because of the propagation delay, a transmitted pulse will be received from
the other nodes a short time after the end of the cycle period. Because of the
large coupling strength and a big N , the sum of all these phase increments
causes the receiving nodes to reach the threshold immediately. This results in
a transmission and thereby causes the other nodes again to fire immediately.
The authors have called this never-ending mutual excitation avalanche effect.
The refractory period eliminates this problem, but on the other hand bounds
the accuracy. Additionally, they found out that the precision of the MaS model
is independent from the network topology, i.e., the synchronization error does
not increase according to a larger multi-hop network. This comes from the fact
that the synchronization error is dominated by the propagation delay and not
by the network diameter.

1The frequency skew of a clock is defined to be the drift with respect to real-time minus 1.
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3.3 Firefly Synchronization in Ad-hoc Networks

According to [TAB06], the authors introduce a time advance strategy based
on the PCO model, which takes the delays in wireless systems into account.
Furthermore, they incorporate the fact that a node cannot transmit and receive
at the same time. The authors declare four important delays: The propagation
delay T0, the transmitting delay Ttx, the decoding delay Tdec, and the refractory
delay Trefr. The propagation delay is the time which is needed for a message
to propagate from the sender to the receiver and is proportional to the distance
between both. Usually, this delay is in the range of several µs and therefore
negligible. The transmitting delay is determined by the length of the message,
whereas the decoding delay indicates the duration between the reception and
the reaction to a synchronization message at the receiver. Further, the refrac-
tory delay defines a short period after a transmission. During the refractory
delay a node ignores all received synchronization messages and ensures stabil-
ity. Therefore, the total delay Tdel depends on the dominant transmission and
decoding delay. It should be noted that if the synchronization strategy is based
on the PCO model, then the accuracy would be lower bounded to this total
delay.

On the other hand, the time advance strategy presented in this paper com-
pensates this total delay by delaying the transmission of the synchronization
message. That is

Twait = L · T − Tdel = L · T − (Ttx + Tdec)

where T denotes the reference synchronization period and L ≥ 1 declares the
number of delayed periods for the phase advance. Consequently, if an already
synchronized node receives a synchronization message, it will be able to incre-
ment the phase after L periods, i.e., exactly L · T seconds after receiving and
decoding the message. Therefore, this eliminates the unavoidable transmission
and decoding delay and results in a natural oscillatory period with a duration
of L ·T seconds. In addition to that, phase increments due to received synchro-
nization bursts are only possible during the receive interval which corresponds
to

Trx = T + (Trefr − Tdec).

The strategy presented here assumes that the transmission delay and the de-
coding delay are well known and constant. If so, the accuracy will be lower
bounded to the propagation delay. A typical phase diagram with L = 1 and
two oscillators (φ1,φ2) is shown in Figure 3.1.

The authors also describe a simulation experiment based on this model with
30 nodes and L = 1 in a fully meshed network. The results show that after

36



3 Related Work 3.4 Firefly-Inspired Sensor Network Synchronicity

t

ø (t)

øth

T Twait Ttx Trefr

ø1
ø2

Tdel

Tdec

transmitfire

Figure 3.1: Phase diagram with L = 1.

an average time of about 15 periods the network converges and the nodes split
into two groups each firing T seconds apart. Further, they mention that this
strategy may be problematic in a multi-hop network.

It should be noted that this synchronization scheme may be inadequate for a
real-world implementation, because if several synchronized nodes in the same
group want to simultaneously transmit a synchronization burst, then the trans-
mission delay will be extended due to the contention-based channel access mech-
anism and therefore degrades the accuracy.

3.4 Firefly-Inspired Sensor Network Synchronicity

This is the most important related work for this thesis and refers to [WATP+05].
Therein, the authors present an extended version of the PCO model, named
Reachback Firefly Algorithm (RFA) which is well-suited for the implementation
in sensor networks2. In order to reduce computing time for the calculation of the
PRC, they simplified the function f described in Section 2.4.1 to f(φ) = ln(φ).
Consequently, the calculation of the phase jump equals ∆(φ) = f−1(f(φ) + ε)
whereas ε defines the coupling strength. Next, after inserting function f in this
term, we get a very simple linear phase jump:

∆(φ) = ε · φ

The next paragraphs in this section covers the simulation and testbed re-
sults of this work. To get a better understanding of the results, the authors
introduced some new terms which are stated below.

2Note that the detailed functionality of the RFA model is described in Section 2.4.2
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Group Spread: In order to measure the quality of synchronization in a network
with different clusters, the authors introduced the notion of group spread
which corresponds to the term precision, introduced in Section 2.2.1.
The group spread is defined as the maximum time difference between any
firings in a group, whereas the group is determined by a window size w and
a clustering algorithm. Based on this window size, the algorithm classifies
several groups out of a number of node firings with two constraints:

1. Every node firing must be classified into a group.

2. Every group contains as many firing events as possible.

Time To Sync: This defines the time until all nodes stay in a group without
group change for 9 out of the last 10 periods.

50th and 90th Percentile Group Spread: The calculation of the percentiles
is based on the distribution of group spread for all groups after the net-
work has achieved synchronicity. More precisely, all group spreads are
measured in the interval [ts + te−ts

2
, te], while ts declares the first sync

time and te determines the experiment end. This time containment avoids
outliers caused by settling effects during the startup phase of the network.

Firing Function Constant (FFC): The FFC is defined to be the inverse of
the coupling strength ε. This value defines the coupling between the
oscillators and limits the maximum phase increment a node could make
to be ε · φth respectively ε · T in the time domain. Therefore, a small
FFC results in a strong coupling, and conversely. Further, the authors
state that if the FFC is too small, then the oscillators may overshoot
and therefore prevents the network from achieving synchronicity. On the
other hand, if the FFC is too large, then the time to sync will increase or
the system will never get synchronized.

3.4.1 Simulation Results

The algorithm was simulated with TOSSIM in contrast to several parameter
choices (e.g. different node topologies, FFC values, number of nodes).

The simulation results based on an all-to-all topology show that very small
FFC values does not result in network synchronicity. On the other hand, larger
FFC values increase the time to sync. Further, the authors observed that the
time to sync does not exceed an upper limit of 400 time periods and that a
large number of nodes increase the probability of overshooting, even if the FFC
is very small.

Another simulation was based on a regular grid topology. In this topology
a node has at most four neighboring nodes and therefor takes multiple hops
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into account. They simulated different grid topologies of 4x4, 8x8 and 10x10
nodes. The results from this simulation are that FFC values in the range of
20 − 500 usually result in synchronicity and larger values increase the time
to sync, especially in larger grids. Further, they state that the time to sync is
more dependent on the FFC value than on the network diameter. Nevertheless,
the network diameter has a slightly impact on the group spread.

3.4.2 Testbed Results

The paper describes a testbed environment that comprises 24 MicaZ motes
with a 7.3MHz clock, which are distributed over a large area in a building. This
ensures a typical sensor network scenario with variable link quality. Based on
this environment, the authors state that they observed a limit on the group
spread due to the clock skew which is about 100µs. To get a good overview
of the achieved group spreads connected to the FFC, Table 3.2 shows the
summarized results from [WATP+05].

FFC Time to
sync

50th per-
centile
group
spread

90th per-
centile
group
spread

Mean
Group
std dev

100 284.3 s 131.0 µs 4664.0 µs 410.4 µs
250 343.6 s 128.0 µs 3605.0 µs 572.2 µs
500 678.1 s 154.0 µs 30236.0 µs 1327.8 µs

1000 1164.4 s 132.0 µs 193.0 µs 63.6 µs

Table 3.2: Summarized testbed results [WATP+05].
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4 Design Approach

In order to perform a distributed clock synchronization in an ensemble of nodes
based on cheap RC-oscillators, we have to combat the synchronization of the
clock state as well as the calibration of different clock rates due to temperature
variations and initial drift. Therefore, two mechanisms are introduced in this
chapter, where the first one performs the clock state correction and the second
concept is responsible for clock rate calibration. It is important that both must
be independent from each other.

4.1 Clock State Correction

The clock state correction in our design approach is based on the RFA and
on the PCO model from Mirollo and Strogatz. Additionally to the algorithm
described in Section 2.4.2, we used the definition of the smooth, monotonic
increasing, and concave down function f : [0, 1]→ [0, 1] from MaS to calculate
the phase jump ∆(φ). Note that the phase is a linear function of time and
can take a value from the interval [0, 1]. Consider the dissipation factor b is
greater than 0 and the pulse strength within 0 < ε < 1, then the phase response
function is therefore

φnew(φ) = min(1, f−1(ε+ f(φ))) (4.1)

and consequently the phase jump equals

∆(φ) = min(1, g(ε+ f(φ)))− φ (4.2)

where the smooth, monotonic increasing, and concave down function f is de-
noted by

f(φ) =
1

b
· ln(1 + [eb − 1] · φ). (4.3)

Because the direct implementation of all these functions would result in a time-
consuming calculation process, we tried to minimize the equation by inserting
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the inverse function f−1 in Equation 4.2. Let f−1(x) = ebx−1
eb−1

, then the simpli-
fied phase jump equals

∆(φ) = min(1, α · φ+ β)− φ (4.4)

where

α = eεb (4.5)

and

β =
α− 1

eb − 1
. (4.6)

Assuming a strong dissipation factor b � 1, then β is negligible and the ap-
proximated phase jump function is reduced to

∆(φ) = min(1, α · φ)− φ. (4.7)

In addition to that, due to a very small pulse strength ε we can assume 0 <
ε ·b� 1. Consequently, the dominant first order of the Taylor expansion allows
us to define eεb = (1 + εb). Inserted into Equation 4.7, we finally get the most
simple phase jump function. That is

∆(φ) =

{
εb · φ if φ · (1 + εb) < 1

1− φ else
(4.8)

Therefore, we have a linear PRC where the constant α specifies the coupling
strength for the oscillators and depends on the product of the dissipation factor
b and the pulse strength ε. This result is similar to the simplified firing function
described in [WATP+05].

4.1.1 Firefly Communication

In order to apply the simplified PCO model in a wireless system, we encounter
some difficulties due to the assumptions which result from the mathematical
model. As already described in Section 2.4.2, these assumptions are again listed
below followed by a discussion of possible problems.

1. The oscillators have identical dynamics (e.g. same period).

2. Nodes can instantaneously fire.

3. Every firing event must be observed immediately (no loss).

4. All computations are performed perfectly and instantaneously.
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Natural imprecision. The PCO model assumes that the oscillators and there-
fore the clocks on the nodes have exactly the same frequency and no variations
over time. In reality this is not possible due to environmental influences and
limits of fabrication and measurements. Additionally, computational impreci-
sion due to floating point operations or truncating are a problem. However,
the nature is also not perfect and therefore the approach presented here should
also be able to deal with small frequency fluctuations. For this reason, we say
that a node is synchronized if the maximum absolute deviation to all other
nodes is smaller than a predefined synchronization window, denoted by w .

Communication delay. The next two assumptions are again usually impos-
sible to accomplish, especially if the exchange of fire events is based on the
communication characteristics of a wireless system. For instance, the message
transfer usually suffers from unpredictable delay. If the delay is predictable and
constant, then this will not be a problem so far. However, the unpredictable
jitter demands a more complex solution. Further the link between two nodes
in a wireless network is often asymmetric and may vary due to local changes.
Therefore, in order better to be able to describe the behaviour of our approach,
the important characteristics regarding the communication delay are analyzed
in the next paragraphs. Further these delays are subdivided according to the
different layers of the ISO OSI seven-layer model. It should be noted that
the underlying protocols used in wireless sensor networks are often kept rel-
atively small and simple in order to reduce memory and energy consumption
and therefore are only declared at the physical layer respectively at the MAC
layer which is comprised in the data link layer. For this reason, the next para-
graphs describes only delays according to these layers and, of course, delays
concerning the application layer.

Delays at the physical layer. The most significant delay according to the
physical layer is generally caused by the transmission of a message, de-
noted by Ttx. The transmission delay mainly depends on the data rate
and on the message size. Another important delay concerning the physi-
cal layer is the propagation delay Tprop. However, in wireless systems, the
propagation delay is in the order of µs and therefore usually negligible.

Delays due to MAC layer. Delays caused by the MAC layer are much more
greater than those caused by the physical layer and is denoted by TMAC .
The MAC-delay heavily depends on the medium and the type of medium
access strategy. Furthermore, because the communication in wireless sys-
tems is generally contention-based, the protocols often use the CSMA/CA
technique to destine the nodes which are allowed to send first. As de-
scribed in Section 2.6.5, this mechanism makes use of backoff periods and
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if a node has lost its contention, it will choose a new random contention
window based on a greater backoff value. This results in unpredictable de-
lays in the order of several milliseconds. Moreover, consider all nodes want
to transmit simultaneously. This would additionally extend the backoff
periods and make things worse. Last but not least, other additional rea-
sons which increases TMAC may depend on the protocol implementation
and can be caused by the processing of MAC events stored in a First In
First Out (FIFO) buffer, or simple interrupts which can be nasty if they
occur very frequently.

Application-specific delays. Delays at the application layer are usually caused
by program execution. Typical examples are message preparation, mes-
sage encoding/decoding, and many other computational functions ac-
cording the message delivery. The delay itself is not a big problem, if it
is constant and predictable. But this is not true if the delay varies over
time and thus produces a jitter which is defined to be the deviation be-
tween the delays. Because the jitter is not predictable, it is only possible
to define an upper bound for it. However, this bound may be great if
the program is written in an inefficient style, so that the delay heavily
depends on the execution flow after a branche. This effect can be kept
to a minimum by applying programming constraints and models, and
performing path analysis (e.g., Worst-Case Execution Time (WCET) -
oriented programming [Pus05]).

Prerequisites for precision improvements. The main goal of our synchro-
nization model is to improve the precision in an ensemble of nodes by elim-
inating the measurable delay, especially those resulting from the MAC layer.
The best way to do this is MAC-timestamping. Therefore, a received message
contains a variable which indicates the duration required for passing down the
send request from the application layer to the MAC layer. This delay is denoted
by TMAC,tx and also includes the time spent on waiting for the transmission
admission due to the CSMA/CA scheme. Additionally, the duration required
for passing the data up to the application layer at the receiver is denoted by
TMAC,rx. Thus, the complete communication delay concerning the MAC layer
and the physical layer is

TMAC = TMAC,tx + Ttx + TMAC,rx.

It should be noted that MAC-timestamping must be supported by the underly-
ing protocol or otherwise the precision may be lower bounded to the variations
in TMAC denoted by εMAC . Additionally, the clock used at the MAC layer
for message transmission or MAC-timestamping should be more accurate than
those used at the application layer.
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However, this requirement does not eliminate the problem of simultaneous
transmissions, because the resulting extended backoff periods may be too large,
so that the delayed messages may be ignored or disturb the flow of synchroniza-
tion. A remedy is to extend the contention-based strategy from the MAC layer
to the application layer. Assuming that all nodes in a network are synchronized,
then this advanced communication contention takes advantage of choosing a
random time of an application based contention window, called firing offset. In
detail this contention window is determined by two constants, named minimum
firing offset (TMinOffset) and maximum firing offset (TMaxOffset). Considering the
Firefly algorithm, instead of transmitting a firing message at the end of each
period, the synchronization message will be transmitted exactly TOffset seconds
prior, where TOffset is a random time between TMinOffset and TMaxOffset . Fig-
ure 4.1 visualizes this behaviour of the offset interval. After receiving such a
message, the receiver has to correct the timestamped message by the duration
of the firing offset. Otherwise, the receiver will not be able to recover the real
period end of the sender. Unfortunately, this strategy may also degrade the
precision according to the granularity of the clock used for determining the
phase and, therefore, the firing event.

t
TMinOffset

TMaxOffset

ø (t)

T

øth

TDMA Communication Fire with Offset

Figure 4.1: Phase diagram with firing offset.

Choosing of TMinOffset . In order to avoid that, transmitted messages are re-
ceived after the end of a period, the minimum firing offset should be greater
than the maximum possible communication delay. To consider unpredictable
delays and the bounded precision defined by the synchronization window w ,
we assume the following:

TMinOffset > 2 · w + TMAC,max
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Choosing of TMaxOffset . The maximum firing offset depends on the number
of nodes which are comprised in the network. For instance, many nodes in
an all-to-all topology may require a greater TMaxOffset than a small network
comprising only a few number of nodes. This comes from the fact that the
synchronization precision mainly depends on the information a node receives
from the neighbors. The difference between the maximum and the minimum
firing offset defines the bandwith which can be used by the nodes. Conse-
quently, the bandwith should be so large that there is enough time for each
node broadcasting its synchronization message. Assuming an all-to-all network
comprising N nodes and because the maximum bandwidth required for such a
synchronization message is mainly destined by the transmission time, we can
define:

TMaxOffset > N · TMAC,max + TMinOffset

Modified RFA algorithm. The above described assumptions requires a mod-
ification of the RFA algorithm considering MAC-delay, firing offset and the
simplified phase jump function. In detail, our Firefly synchronization algo-
rithm can be split into five principal operations:

1. Sort firing events. The sort operation is necessary in order to get a list of
the ascending ordered instantaneous firing events for the phase jump
calculation. Otherwise, if the events are processed in the order they
arrived, then it’s highly likely that the real instantaneous firing event
of a later arrived event is prior to the first occurred events. Note
that the real instantaneous firing event is calculated by summing
the relative timestamp with the firing offset. For example consider
that a node has received n firing events during a period. Then it
reaches the end of the period and therefore starts this algorithms.
Considering Ti,stmp denotes the timestamp of event i with 1 ≤ i ≤ n,
Ti,Offset denotes the firing offset of event i and Ti,MAC declares the
corresponding MAC-delay, then after applying the sort algorithm,
the real instantaneous firing events are determined by

εi = Ti,stmp + Ti,Offset + Ti,MAC

with

∀i, j ∈ {1, . . . , n} : i < j =⇒ εi ≤ εj.

2. Remove least and greatest events. In order to compensate messages
from erroneous nodess, the least and greatest firing events are re-
moved. Otherwise, a single faulty node sending arbitrary offsets may
degrade the precision or moreover may keep the network unsynchro-
nized. In this context it should be noted that the removing of such
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events also reduces the amount of synchronization information and
therefore will also affect the precision.

3. Merge neighboring events. It is important to merge several neighbor-
ing events, because this avoids overshooting according to too many
firing events. For instance, considering the simplified phase jump
Function 4.8, then if the number of firing events denoted by n is
so large that the overall phase jump reaches the threshold, i.e.,∑n

k=1 φkα
n−k+1 ≥ φth, then no phase shift would be performed.

However, all these firing events are neighboring and can be seen
as a single event. This also corresponds to the natural behaviour
of fireflies. If such an insect is exposed to a swarm of synchronized
fireflies which flash slightly apart, then the exposed Firefly will only
adjust its phase as there is a single flash. According to [Buc88], the
insects may also react stronger to a brigher light. But we simplified
this behaviour by building clusters defined by a cluster interval, each
containing an amount of firing events. The real instantaneous firing
event of the cluster is therefore calculated through partial averaging.
It should be noticed that the choice of the clustering interval has also
an impact on the precision. Therefore, it is advantageous to imple-
ment a clustering algorithm similar the one described in [WATP+05]
which has the following constraints:

a) Every node firing must be classified into a group.
b) Every group contains as many firing events as possible.

4. Calculate overall phase jump. The calculation of the overall phase
jump is based on the original RFA algorithm, but uses the previous
described clusters instead of the atomic firing events. The modi-
fied RFA version is declared in Algorithm 2. This algorithm first
sets a variable named overall phasejump to 0 which will also define
the start condition (start phase) for the next period. Then a loop
proceeds all ascending ordered real instantaneous firing events and
calculates the local phase jump with respect to the current over-
all phase jump value for each cluster ε̃i, where each phase jump is
cumulatively added to the overall phase jump variable. Note that
the if-statement in line 3 ensures that only event clusters prior the
period end (phase threshold φth) are taken for the computation. Af-
terwards if the calculated overall phase jump is less than the period
(phase threshold φth), then this phase is returned. Otherwise, if
the if-condition in line 8 is not valid, then the zero phase will be
returned. This ensures that a too strong excitation due to many
phase jumps makes the calculation predictable and further is used
as an important assumption for choosing the coupling parameters.
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Algorithm 2 RFA algorithm considering MAC-delay and firing offset.

calc overall phasejump()

1: overall phasejump = 0
2: for i = 1 to #cluster do
3: if ε̃i ≤ φth then
4: phasejump = ∆(ε̃i + overall phasejump)
5: overall phasejump = overall phasejump + phasejump
6: end if
7: end for
8: if overall phasejump ≥ φth then
9: overall phasejump = 0

10: end if
11: return overall phasejump

5. Adjust phase. Finally the previous calculated overall phase jump is
applied to the phase. This is done by changing the start con-
dition of the phase for the next period. For instance, instead
of starting with phase 0, a node starts with the content of the
overall phasejump variable returned in the algorithm above. Note
that if the overall phasejump ≥ φth , then the start phase is set to 0.
Furthermore, it is very important to suppress the firing in the cur-
rent period, if the start phase is greater or equal half the threshold
phase. This is a major assumption for choosing the coupling param-
eters and further eliminates the occurrence of fixpoints. A fixpoint
is for example the state, where two nodes have such a phase, so
that after each period they only change their phase states. In other
words the phase state of both nodes is the same in each second pe-
riod. The following short pseudocode in Algorithm 3 illustrates this
behaviour:

Algorithm 3 Algorithm for adjusting the calculated overall phase jump.

1: overall phasejump = calc overall phasejump()
2: if overall phasejump ≤ φth then
3: start phase = overall phasejump
4: if overall phasejump < φth/2 then
5: set offset time for firing
6: else
7: suppress firing for the current period
8: end if
9: end if
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4.1.2 Lower Bound for the Coupling Parameter α

In order to obtain good synchronization results with respect to different pa-
rameter choices, it is important to find bounds for these parameters. Further
we want to calculate the optimal coupling factor with respect to the clock drift,
so that the Firefly algorithm can still synchronize the nodes. For this reason,
we first denote a virtual clock of node k with V T k. Next we want to get the
duration of the synchronization interval of a specific clock k. For this we intro-
duce the term Ik, which determines the interval of clock k with respect to the
reference clock z.

Ik = z(V Ck
i+T )− z(V Ck

i )

Moreover we need to define the maximum deviation between the intervals of
any clocks in an ensemble and is herein after referred to as the virtual clock
skew, denoted by Tskew.

Tskew = max
∀j,k

(|Ij − Ik|)

Without loss of generality we assume Ij > Ik. If the Firefly algorithm is
based on Equation 4.7, then the coupling factor α must be greater than Ij

Ik .
Otherwise, the system will never get synchronized.

The proof is trivial. Consider the clocks are already perfectly synchronized,
but because of the virtual clock skew the node with the shorter interval Ik will
reach the phase threshold φth earlier than the other one with the interval Ij.
Consequently, node k fires and node j receives the fire event at φjfire, where

φjfire = φth · I
k

Ij . Further the phase jump performed by clock j at the phase

φjfire is denoted with ∆(φjfire). In order to keep the system synchronized, the
following equation must be valid:

∆(φjfire) + φjfire ≥ φth

Otherwise, the system will definitely get unsynchronized. Note that φth is
defined to be 1. So the result after substituting ∆(φjfire) with Equation 4.7 is:

α ≥ Ij

Ik

Hence if the equation above is valid, the precision of an ensemble of clocks
based on the Firefly algorithm is lower bounded to Tskew and the overall syn-
chronization interval is determined by the clock with the shortest period.

Π ≥ Tskew
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4.1.3 Upper Bound for the Coupling Parameter α

It is obvious that the coupling parameter α for the phase jump function must
have an upper bound. Otherwise, the clocks will never get synchronized due
to a mutual excitation. In detail, if α is so large that the phase jump function
∆(φ) at the phase φ always returns a phase jump of about 1−φ, than this will
definitely keep a network of more than two nodes unsynchronized. It should be
noted that if the network is comprised of exactly two nodes, then the system
will achieve synchronicity. Otherwise, in the case of three or more nodes, it
can be shown that the network will never get synchronized. However, if a
network is already perfectly synchronized and we neglect the communication
jitter and any inaccuracy, then the system will keep synchronized independent
of the choice of the coupling parameter α.

Theorem: The coupling factor α must be chosen, so that the following condi-
tion

α <
2 ·N

2 ·N − 1
is valid, where N denotes the maximum number of fire events a node may
receive within a period, i.e., the maximum number of phase jumps a node
may perform.

The equation is based on the assumption that the maximum allowed overall
phase jump must not be greater than half the threshold phase φth. Therefore,
we denote the maximum possible local phase jump with ∆max which equals
φth − φth

α
. Next we assume the worst case that a node performs at most N

phase jumps. This corresponds to the reception of N fire events. Consequently,
the equation N · ∆max <

φth

2
must hold and after solving the equation for α,

we come to the result α < 2·N
2·N−1

.

4.1.4 Rate of Synchronization

The authors from [MS90] and [WATP+05] have analyzed the synchronization
rate for a network with two oscillators. In this case, they have proven that
the time to synchrony is inversely proportional to the coupling factor α and
further depends on the initial phase difference of the nodes at t = 0, denoted
by δ = φ

(0)
A − φ

(0)
B . Therefore, the number of iterations k until synchronicity

equals

k ≈
1

α
· ln 1

2 · δ − 1
.

Mirollo and Strogatz have also analyzed the case of n oscillators. However
considering a multi-hop topology requires a more sophisticated solution and is
stated in [LW04].
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4.2 Clock Rate Calibration

The concept of clock rate calibration was incorporated into the design approach,
in order to combat the problem of frequency deviations due to the use of low-
cost sensor nodes in a network. If no clock rate calibration is performed, than
this will result in a bad precision and may lead to the loss of synchronization.
This is especially a problem in combination with the Firefly algorithm pre-
sented above. Note that the rate correction is performed by a virtual clock and
therefore is based on the change of the granularity by applying an adjustment
value, denoted with Hk(t)1. In other words this adjustment value changes the
threshold for the clock.

Moreover, the general interpretation of the virtual clock concept may result
in different implementations. For instance, the realization can behave in more
smaller time granules or otherwise in few extended granules. From an objective
point of view both implementations are certainly based on the same technique
of macroticks and microticks. The first variant uses a number of macroticks
to determine the duration of the synchronization interval and therefore needs
an additional software counter. The other scheme represents the macrotick as
the biggest applicable time unit which corresponds to the complete synchro-
nization interval. The first variant may be more adequate for the theoretical
concept of virtual clocks, because thus the software level has again the percep-
tion of ticks with a small granularity. In reality this technique produces many
interrupts and may disturb the execution flow of a node. Contrary the second
version produces only one interrupt for each period. This is indeed better but
may be also a problem if the execution start of several tasks are based on a
distinct point in time during a synchronization interval (e.g., Time-Triggered-
Protocols), because the nominal point of time must be scaled to the overall
interval, i.e., the nominal interval with the adjustment value H. Furthermore,
if events are recognized during the interval, the timestamp must again be nor-
malized to get a rational timestamp with respect to the standard interval. All
these interconversions require some computation and may reduce the perfor-
mace of the application. This solution may be interesting if there is no need
for a frequently virtual clock read or write access during a synchronization in-
terval, because this may increase the computational effort and thus worsens
the precision. This comes from the fact that the virtual clock abstracts from
the internal processing and every read and write access for changing the clock
state must be done with respect to the real phase threshold. Assuming that all
calculations relate to the notion of phase, then for adjusting the clock state the
virtual clock expects a value from 0 to φth. Internally, the virtual clock has to
scale this value to the real phase threshold φth,real which equals the addition

1Note that the adjustment value H is expressed as a phase.
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of the nominal phase threshold φth and the adjustment value H. Conversely
the timestamp of an event during a period is usually measured in microticks
and consequently must be normalized if this timestamp is used outside of the
virtual clock. For example if a given clock state φset ∈ [0 . . . φth] should be set,
then the content of the counting register which corresponds to the internal real
phase φset,real should equal

φset,real = φset ·
φth,real
φth

Further if the content of the phase register is read then the value outside of the
virtual clock should equal:

φread = φread,real ·
φth

φth,real

The advantage of this implementation is that the interrupts can be kept to a
minimum and is only relevant in applications where frequently interrupts may
disturb the progress of an application.

Our approach is based on the second virtual clock strategy, because the other
method produces many interrupts which are unacceptable due to the MAC
protocol. Consequently, the adjustment value directly maps to the amount of
increase or decrease of the phase threshold φth. Let Hk

i be the adjustment value
of clock k at period i, then the real phase threshold is φkth,real,i = φth +Hk

i .

The core concept of our rate calibration algorithm is that a node stores the
measured durations of one or more synchronization intervals of all neighboring
nodes. In order to reduce the effect of jitter, the last eight measurements are
stored in a buffer. The average of all these values results in a better assump-
tion about the real interval duration of a neighboring node. This calculated
interval is then used to adopt the own adjustment value H. There exist also
the alternative to calculate the averaged interval via linear regression based
on the deviations between the measured interval and the nominal interval over
several periods. However, the linear regression approach needs a more intensive
computation and the experiments show that the overall averaging approach is
good enough for rate calibration. In order to adjust the clock speed to be in
accord with the neighboring nodes, every node has to get the local view of the
neighbor’s clock intervals and then calculates the deviation to the own inter-
val. It is important that the term “local view” means that the measurement
is based on consistent microticks. In other words the duration between two
consecutive microticks of a node must be constant and the measured interval
must be independent of the sender’s adjustment value H of the virtual clock.
In detail, a node always measures the number of consistent microticks which
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correspond to the nominal number of microticks at the sender. This method is
demonstrated in Figure 4.2. In this diagram, the sender node is slower than the
receiver node and therefore the receiver node has to extend its phase threshold
φth to φth,real by adding the adjustment phase H. However, if such a direct
adaption is used in reality, then this will result in a mutual adjustment of the
threshold. For this reason, we introduced a smooth adjustment which can also
be realized in a simple PI-controller with a dominant proportional part.

t
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Figure 4.2: The principle of rate calibration.

In general the rate calibration algorithm can be distinguished in the following
parts which are described in detail in the next subsections:

1. Interval measurement and buffering.

2. Calculation of the real interval for each individual node.

3. Sorting of these intervals.

4. Remove least and greatest intervals (to introduce fault-tolerance).

5. Calculate overall average interval.

6. Smooth computation of the adjustment value H.

7. Increase or decrease the real phase threshold φth,real based on H.

4.2.1 Interval Measurement and Buffering

As mentioned above, a node has to measure the nominal intervals of the neigh-
boring nodes in the own granularity and in absence of the virtual clock. How-
ever, the only information a node gets from the neighbors are the fire messages
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which may contain some additional data to extract the number of ticks in the
sender’s microtick granularity. So relating to the phase, this amount of ticks
corresponds to the state of the real phase φreal(t)

2 and not the normalized phase
φ(t). Further we denote the receiver node with the letter r and the sender nodes
with the variable j which can acquire a value from 1 to n where n declares the
maximum number of sender nodes. Additionally, in order to measure the inter-
val duration, every fire event has to be timestamped. For instance, if the fire
event ejfire from the sender j is received at the node r, then the timestamp of

this event at the receiver is denoted by Cr(ejfire). To distinguish different fire
events from the same node, the events are chronology ordered and furthermore
numbered serially. Thus, two consecutive fire events from a node j are labeled
with ejfire,k and ejfire,k+1, where k defines the chronology ordered position in
the rate-calibration buffer and can take a value from 1 up to the maximum
capacity of the buffer, denoted with m. The duration between two fire events
from a sender j in the receiver’s clock granularity corresponds to the difference
between the two timestamps and is declared as

Irj,k = Cr(ejfire,k+1)− C
r(ejfire,k)

. Assuming that the variability in transmission delay due to the contention
based access strategy at the MAC layer is relatively large, then we have to de-
crease the measured interval duration by the MAC delay TMAC . This requires
that the measurement of TMAC is based on the same clock used for times-
tamping. Otherwise, it is all but impossible to scale this delay to the same
granularity like the timestamping clock. For this reason, there may be always
a small error, especially if the jitter in MAC delay is very big.

The duration between two consecutive fire events does not correlate to the
nominal interval at the sender, because it contains the phase jump and the
difference of the firing offsets from the first and second fire event. For further
explanations we denote the normalized phase offset of a fire event k from a
node j by φjoffset,k and the corresponding normalized phase jump from the same

period with ∆j
k. All these values are scaled according to the phase adjustment

value Hj
k of the corresponding period k. In detail, the following analogon can

be postulated:

Irj,k ≡ φjoffset,k ·
φth +Hj

k

φth
+ (φth − φjoffset,k+1 −∆j

k+1) ·
φth +Hj

k+1

φth

2Note that the real phase also corresponds to the physical clock, but periodically resets to
0 if it reaches the real threshold φth,real.
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The right term defines the equivalent number of consistent microticks at the
sender node. However, we want to get the number of ticks in the receiver’s
granularity for the corresponding nominal number of ticks at the sender, de-
noted by Ĩrj,k . According to the rule of three and after simplifying the right
term, we come to the following result:

Ĩrj,k = Irj,k ·
φth

φth +Hj
k+1 + φjoffset,k ·

φth +Hj
k

φth
− (φjoffset,k+1 + ∆j

k+1) ·
φth +Hj

k+1

φth

Now Ĩrj,k corresponds to the nominal number of ticks of the sender’s node.

Although the calculation seems to be clear, it is maybe necessary that the
computation is kept to a minimum. Furthermore, if the duration measurement
should be performed over several periods (e.g. 3 intervals) in order to reduce the
influence of the communication jitter, then a synchronization message must not
be lost. Otherwise, the incomplete information of the relevant periods makes
it impossible to calculate the overall duration. It should be noted that the
duration measurement over several periods only compensates the short term
drift of the oscillators. The overall average interval of all synchronized nodes
will never be constant over a longer time period (e.g. several days). Instead
the interval duration will marginally vary over minutes or hours. But it in
our approach there is no demand on the compensation of the long-term drift,
because the approach is not aimed at achieving time synchronization. Instead
the term synchronicity does tolerate interval variations as long as the deviation
is small enough. The short-term drift is always present and has a deeper impact
on the precision.

There exist a tradeoff between the synchronization precision and the mea-
surement interval. Whereas a short measurement interval improves the preci-
sion and degrades the long-term stability, a long measurement interval degrades
the precision and improves long-term stability. For this reason, an easier ap-
proach for identifying the amount of ticks at the sender node could be per-
formed by an additional timestamping at the sender node. But this method
may increase the communication overhead and therefore degrades the energy
efficiency. Let Cj(ejfire,k) be the timestamp from the sender before the fire
message is transmitted, then we can denote the equivalence much more simpler
with:

Irj,k ≡ Cj(ejfire,k+1)− C
j(ejfire,k)

and similarly Ĩrj,k can be calculated with the following term:

Ĩrj,k = Irj,k ·
φth

Cj(ejfire,k+1)− Cj(ejfire,k)
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Concluding, the main difference between both approaches is the amount of
data which have to be included in a fire message. The Table 4.1 contains a
comparison of the data which is needed to transmit and further has to be stored
in the receiver buffer and in the rate-calibration buffer for the rate calibration
algorithm. Note that although the timestamping version needs no data about
the phase offset, it still has to be transmitted and stored in the receiver buffer
for the state correction algorithm. But the advantage of this version is that it
accepts lost timestamp messages.

Without Timestamping Timestamping Approach

Transmission Data

node-ID

phase state φj(ejfire) (for RFA algorithm)

phase offset φjoffset (for RFA algorithm)

phase adjustment value Hj

phase jump ∆j sender timestamp Cj(ejfire)

Receiver Buffer Data

node-ID

phase state φj(ejfire) (for RFA algorithm)

phase offset φjoffset (for RFA algorithm)

phase adjustment value Hj

receiver timestamp Cr(ejfire)

phase jump ∆j sender timestamp Cj(ejfire)

Rate-Calibration Buffer Data

node-ID

receiver timestamp Cr(ejfire,k)

phase adjustment value Hj
k latest phase adjustment value Hj

phase jump ∆j
k sender timestamp Cj(ejfire,k)

Table 4.1: Comparison of demands for additional communication data for the
different interval calculation approaches.

4.2.2 Calculation of the Average Interval for each Node

Now we have measured the duration of the neighbor’s nominal synchronization
intervals in the receiver’s granularity. However, this interval does not reflect the
real interval length used for the Firefly algorithm. For this reason, the receiver
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has to scale the measured nominal intervals according to the corresponding
sender’s latest phase adjustment value, denoted by Hj. The resulting sender’s
real synchronization interval in the receiver’s granularity corresponds to

Îrj,k = Ĩrj,k ·
φth +Hj

φth
=
Cr(ejfire,k+1)− Cr(ejfire,k)

Cj(ejfire,k+1)− Cj(ejfire,k)
· (φth +Hj)

or with respect to the version without timestamping:

Îrj,k =
(Cr(ejfire,k+1)− Cr(ejfire,k)) · (φth +Hj)

φth +Hj
k+1 + φjoffset,k ·

φth +Hj
k

φth
− (φjoffset,k+1 + ∆j

k+1) ·
φth +Hj

k+1

φth

As a next step all scaled intervals of the same node are averaged. This ensures
that the error due to the jitter and imprecision in computation is reduced. If
the capacity of the rate-calibration buffer is big enough, then the error should
be negligible. Our experiments have shown that a buffering over eight periods is
good enough and requires not so much memory. Further we denote the average
interval at the receiver r for each sender node j with Īrj and equals

Īrj =
1

m− 1

m−1∑
k=1

Îrj,k

where m denotes the capacity of the rate-calibration buffer in periods.

4.2.3 Sorting, Removing and Overall Averaging

In order to involve the occurrence of erroneous nodes, we have introduced a
simple concept to avoid the worst case. For instance, a network may contain
a node with a very bad clock drift which heavily deviates from the other ones.
Consequently, the network would take a long time to get synchronized or in
the worst case would never get synchronized. This originates from a too big
adjustment value H. The precision of a network will never get better than the
microtick granularity of the slowest node due to the concept of virtual clocks.

A simple way to exclude such an erroneous node in the clock rate calibration
algorithm is to remove the nodes with the greatest and the least clock drift.
All other nodes are used for the overall averaging. As a result the nodes in
a network based on an all-to-all topology should always achieve a common
average drift. The overall average interval Īr is calculated like the averaging of
the node-specific intervals. Hence let n denote the number of nodes, then the
overall averaged interval is calculated with the following equation:

Īr =
1

n

n∑
j=1

Īrj
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Assuming that the sender nodes are ordered by the clock drift, then the
removing of the greatest and least node can be performed by starting the
summation at the second node and end it at the last but one.

4.2.4 Computation and Employment of the Phase
Adjustment Value

It is obvious that H can be calculated through a simple subtraction of the
before described overall average interval Īr and the nominal interval which
also equals the nominal phase threshold φth. However, the results from several
experiments show that such a direct adjustment causes a continuous increase
of the overall average drift. In other words the intervals are getting longer and
longer. For this reason, we decided to introduce a smooth adaption. Therefore,
the phase adjustment value H should smoothly converge to the overall average
interval. The equation for this calculation is stated below.

Hr = Hr
old · (1− σ) + (Īr − φth) · σ (4.9)

The parameter σ defines the level of smoothness and must be in the range
of (0, 1). In detail, if σ is very small, then the adaption will be performed
slowly. Otherwise, a great σ results in a fast adaption. As mentioned above the
experiments show that a small σ let the overall average interval getting shorter
and a greater σ lets it getting larger. It seems that if the measurement interval
is greater than one period, then 1

2
is mostly the swell for the change of the drift

behaviour. This property makes it possible to use it as a control parameter
for the overall offset drift stabilisation. The overall offset drift therefore means
the slow but permanent increase or decrease of the adjustment values H of all
nodes.

It is interesting that the formula for the smooth rate calibration presented
above can be transformed so that it is similar to a well known closed-loop
control system depicted in Figure 4.3. Compared with our rate calibration
formula, the calculated overall average interval equals the setpoint of the control
system, denoted by w. Similarly the control value u matches the result of
Equation 4.9, where u=̂Hr +φth. In the following we denote the term Hr +φth
with Ircontrol. Assuming that the disturbance variable d is negligible, then the
actual value y can be put on a level with the control value from the previous
calculation, declared by Ircontrol,old .

Regarding the Equation 4.9, if we replace the adjustment value Hr with the
equivalent term Ircontrol − φth and Hr

old with Ircontrol,old − φth, then after some
transformations we come to the following formula

Ircontrol = Ircontrol,old + σ · (Īr − Ircontrol,old) (4.10)
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controller
w e u control

path

d

y+
-

Figure 4.3: The general model of a closed-loop controlled system.

which directly maps to the previous described control loop with a simple pro-
portional control. Further note that the term Īr− Ircontrol,old indicates the error
variable e. An extensive interpretation of the above described proportional be-
haviour could be the more complex concept of a digital Proportional-Integral-
Differential (PID)-controller. For this reason, we introduce the variables eold
and eold2 which correspond to the error variable from the previous period re-
spectively from the last but one period. Taken together these results can be
described in a pseudocode, depicted in Algorithm 4 where the factor q0 equals
the variable σ. In this context the results of several experiments indicate that

Algorithm 4 Calculation of the adjustment value based on a digital PID-
controller.

1: e = Īr − Ircontrol,old
2: Ircontrol = Ircontrol,old + q0 · e+ q1 · eold + q2 · eold2 {with q0 = σ}
3: eold2 = eold
4: eold = e
5: Ircontrol,old = Ircontrol
6: Hr = Ircontrol − φth

the factors q1 and q2 does not improve the precision of the rate calibration.
This is logical since a differential part would only enforce the influence of jit-
ter. However, this requires more intensive empirical studies to get a better
understanding of the relation between the parameters and the resulting effects.

Average interval drift stabilisation. As mentioned above, the smoothing fac-
tor σ has an impact on the overall interval drift. So it seems to be impossible
to hold the duration of the common period constant. However, this factor can
also be used to compensate this problem. As already mentioned, the midpoint
value for the drift change is about σ = 1

2
. For this reason, we only have to find a

parameter which can be taken to control the value of the smoothing factor. An
easy way is to build the average over all received adjustment values Hj during
a period. This value must then be bounded to a phase which corresponds to a
time within ±10ms. The truncated phase is then scaled down so that it is in
the range of [−1

2
,+1

2
]. Consequently, the smoothing factor will range from 0 to
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1. Because a factor of 0 stops the calibration effect of the algorithm, there must
be a lower bound of about 1

10
. Assuming that H̄ denotes the current average

adjustment value, where H̄r = 1
n

∑n
j=1H

r
j , then the factor σ can be calculated

through

σ = max

(
1

10
,
1

2
− H̄r,trunc · 1/2

φ(100ms)

)
with H̄r,trunc = min(max(H̄r, φ(−100ms)), φ(100ms)).

4.3 Round Number Synchronization

The round number synchronization is an important aspect and enables a node
to get a local view of the global clock. As a result all nodes are synchronized,
so that in each period they always have the same tick number. This is a
prerequisite for the later introduced TTP.

In order to incorporate the existence of erroneous nodes, which always dis-
tribute an incorrect tick and different information to each node, we extended
our fault hypothesis and thus introduced an improved round number synchro-
nization. Because it is not easy to implement a distributed algorithm which
is able to identify such a node without too much message exchange, we con-
strained our erroneous node to distribute incorrect ticks which are in the range
of 0 and a maximum tick number tmax.

The main principle of the round number synchronization is based on a tick-
offset variable, declared by toffset. Therefore, a node j has to transmit the
current tick number defined by tj, and the current tick-offset tjoffset in each
period. So if an erroneous node transmits a random tick number and a tick-
offset which in sum are smaller than an upper bound tmax, then the receiving
nodes are able to determine that there is something amiss and thus ignore this
information.

The detailed detection algorithm is described in the Pseudocode 5. It should
be noted that the tick-offset variable tjoffset and the current tick-number tj of

node j are initially set to 0. Further after each period, tj is incremented by
one until a predefined end-of-round number teor is reached. This number is
determined by the TTP. If tj equals teor, then tj will be reset to 0. To ensure
that the algorithm always converges, a node only adapts its current tick number
to the greatest one from all received neighboring nodes. Thus, after some time
all nodes will have the same tick-number in each period and therefore will not
correct their ticks anymore.

It should be noted that this synchronization algorithm does not imply a real
fault tolerance, because if there exist a byzantine node, then the information
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Algorithm 5 Round number synchronization.

1: new current tick = tj

2: new tick offset = tjoffset
3: for each received synchronization message do
4: rx msg =next received message
5: if rx msg.sync state = synchronized then
6: if rx msg.current tick + rx msg.tick offset > new current tick +

new tick offset then
7: new current tick = rx msg.current tick
8: new tick offset = rx msg.tick offset
9: end if

10: end if
11: end for
12:
13: if new current tick + new tick offset > tj + tjoffset then

14: tj = new current tick
15: tjoffset = new tick offset+ new current tick
16: end if
17:
18: tj = tj + 1
19:
20: if tj ≥ teor then
21: tj = 0
22: end if

of a synchronization messages of such a node is usually not bounded. So this
algorithm only considers erroneous nodes. But this algorithm also works in the
presence of any network topology, even in asymmetric multi-hop networks.

4.4 Energy Awareness

The energy consumption is an important quality characteristic of each com-
munication protocol used in sensor networks. Sometimes often more than 50
percent of energy is used for idle listening [YHE04]. Therefore, it is necessary
to reduce the major energy sources. Some MAC protocols have already in-
corporated such a concept (e.g. S-MAC, T-MAC, etc.). However, we assume
that the underlying MAC layer is only responsible for the medium access con-
trol and not for energy improvements. For this reason, we assign the tasks
for energy reduction to the upper layers. In the next paragraphs we introduce
such a mechanism which is based on the above described biologically inspired
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synchronization approach.

In order to reduce power consumption caused by idle listening, it is necessary
to turn off the transceiver module as much as possible. In literature a protocol
based on such a scheme is also called to be a duty-cycle protocol. In such
protocols a node becomes dormant most of the time and only wakes up for
a short time if it is necessary. Such a wake up event could be the exchange
of synchronization messages. The duty-cycle is determined to be the ratio
between the duration used for listening to the medium and the duration of the
complete period. Figure 4.4 demonstrates the principle of duty-cycling with
respect to the imprecision, bounded by the synchronization window w . This
demands that the receiver module must be enabled before any transmission is
started. To guarantee this behaviour, the difference of the point in time when
the receiver is enabled and the first transmission may start should be greater
than the predefined synchronization window w . A good way is to choose a
time difference which equals twice the synchronization window. This should
also involve the fact that the receiver requires some milliseconds for the startup
phase. According to Figure 4.1, the duty-cycle equals

TMaxOffset+2·w
T

.

TDMA Communication Fire with Offset

disabled enabled
t

receiver >W

t

Figure 4.4: The receiver module must be enabled prior the first possible trans-
mission.

4.4.1 Energy Efficiency through Time-Triggered Approach

Until now we have only discussed the synchronization approach to establish
a common notion of time. This does not take the data exchange between
the nodes into account. For this reason, a time-triggered system based on
this time notion is introduced. Such a system takes advantage of the a priori
known instants of transmission events. Given a sufficient precision of this global
time, the sending and receiving units can be turned off for the time, where no
communication will take place. In contrast to standard protocols based on
idle listening, this approach improves power consumption by reducing the idle
listening time. However, similar to the above described low duty-cycle scheme,
a node has to enable the receiver unit some time before it expects a data
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transmission. This avoids the problem caused by the bounded imprecision in
synchronization. For instance, if a node enables the receiver unit at the same
point in time when the sender node is expected to transmit, then the enable
event would highly likely occur after the transmission start. This originates
from the fact that the precision of every synchronization strategy is limited due
to unpredictable environmental behaviour. Therefore, the node’s local view of
the global time with respect to the real-time is temporally varying among each
other. If the duration between the early enabling of the receiver unit and the
sender’s transmission start is greater than the bounded imprecision determined
by the synchronization window w , then a node will always be able to receive
the data. A good value for this duration is 2 · w .

Fire with Offset

disabled

t

receiver

t
enabled

>W

1. slot: rx 2. slot: rx N. slot: exec

transmitter

enableddisabled

TStartOffset TSlot

3. slot: tx

>W >W

...

t

T
TSlotTSlot

Figure 4.5: TDMA communication during a period.

Figure 4.5 shows the time diagram of a time-triggered approach for a single
node. Therein, a period is subdivided into several slots whereas each slot
corresponds to either a receiving slot, a sending slot, an execution slot, or an
idle slot. Concerning the energy awareness, the most important slots are the
receiving slots, because they determine how much energy is spent on listening
and receiving and thus degrade the duty-cycle. For this reason, it is important
to introduce only as many receiving slots as necessary. In the diagram, the first
and the second slot are assigned to be receiving slots. Note that the active time
for the receiver unit differs between these slots. This comes from the automatic
deactivation after the receiver has recognized the end of a transmission.
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In order to accelerate the development process, we decided to simulate our algo-
rithms with a probabilistic wireless sensor network simulator called JProwler.
JProwler has been developed by the Institute of Software Integrated Systems
at the University of Vanderbilt and is basically configured to simulate the be-
haviour of Berkeley Motes running TinyOS. For this reason, JProwler also pro-
vides the simulation of the standard MAC protocol used in TinyOs. JProwler
is widely used in the simulation of wireless sensor networks and originally sup-
ports a simple GUI and several simulation models. It is a Java version of
Prowler which is used for verifying and analyzing communication protocols
of ad-hoc wireless sensor networks. Details about Prowler can be found in
[SVML03]. It further provides the opportunity to simulate two different radio
models which are the Gaussian Radio Model and the Raileigh Radio Model.
In our simulations we always applied the Gaussian Radio Model, because this
model is more accurate if the nodes are mainly static. The sources and some
documentations can be found at the ISIS-Homepage 1. Because JProwler is
an open source program written in Java, it offers an easy way to modify and
extend the sources to meet different needs. This is very helpful to adjust the
program to different simulation scenarios. For instance, to be able to reason-
ably test the clock drift algorithm, it was necessary to extend the simulator’s
assumption coverage about the behaviour of the oscillator technology used in
a virtual nodes. Because the drift mainly depends on the temperature and on
the underlying oscillator, the extended simulator is also able to simulate the
temperature dependence from several crystal cuts and RC based oscillators. All
theses enhancements offers a realistic development environment and further re-
duces the time to results. In comparison with the testbed experiments, it has
been shown that our enhanced simulator delivered almost the same results.

5.1 Simulated Clock Drift Fault Injection

The clock drift fault injection is based on the formula described in Section 2.3
and therefore depends on the simulated ambient temperature. The temperature

1ISIS, Institute For Software Integrated Systems: http://www.isis.vanderbilt.edu/Projects/nest/jprowler

63



5 Simulation based on JProwler 5.2 Advanced JProwler GUI

range was chosen to be between −40 ℃ and 85 ℃. This should cover the
natural temperature appearance. Additionally, the oscillator model of every
virtual node can also have an initial clock drift which is independent of the
temperature. The initial clock drift should simulate the frequency variations
due to fabrication inaccuracies. Beside the clock stability, this is also a major
quality criterion of an oscillator.

5.2 Advanced JProwler GUI

The Graphical User Interface implemented in the original JProwler simulator
only contains a simple output window which does not allow any user interac-
tions. However, in order to visualize the influence of several parameter choices,
it is necessary that the GUI has also some dialogs which enables the user to
change the important JProwler-specific or also application-specific parameters
on-line. For this reason, several dialogs have been implemented and are de-
scribed in the next subsections.

5.2.1 The Basic JProwler Setup Dialog

The parameters in the basic JProwler setup dialog are responsible for the com-
plete behaviour of the communication and corresponds to the physical layer of
a real node. These variables are initially set to simulate the Berkely’s ZigBee2-
nodes based on TinyOS. However, as later described we are using Atmel’s
ZigBee nodes which contain the Atmel specific IEEE 802.15.4 MAC-stack. For
this reason, these parameters are modified to simulate the communication delay
from the ZigBee nodes.

Figure 5.1: The basic setup dialog from JProwler.

Figure 5.1 shows a dialog which contains the parameter choice for the Atmel’s
ZigBee nodes. The different variables are described below:
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Time resolution: This variable has the most important impact on the simu-
lator behaviour, because it determines the amount of discrete simulator
steps which should be executed per second. This parameter has an in-
fluence on the speed and precision of the results. The standard value is
40000 which corresponds to the 38.4 kbps speed. Considering the files
from JProwler, this variable is defined in “Simulator.java”. It should be
noted that every time and time intervals in the simulator is represented
using this resolution. For this reason, the value is only displayed in the
dialog and thus does not allow any on-line modification.

Minimal send waiting time: The “sendMinWaitingTime” variable defines
the constant component of the time spent waiting before the start of
a transmission. Considering the files from JProwler, this variable is de-
fined in “ZigBee2Node.java” and also depends on the time resolution. For
instance, if the time resolution is 40000, then a value of 40 corresponds
to 1 ms.

Random send waiting time: This parameter defines the varying component
of the time spent waiting before a transmission due to the CDMA scheme.
Considering the files from JProwler, this variable is defined in “Zig-
Bee2Node.java”. The value depends on the time resolution described
above.

Minimal backoff time: Defines the constant component of the backoff time.
Considering the files from JProwler, this variable is defined in “Zig-
Bee2Node.java” and depends on the time resolution above.

Random backoff time: Defines the varying component of the backoff time.
Considering the files from JProwler, this variable is defined in “Zig-
Bee2Node.java” and again depends on the simulator’s main time reso-
lution.

Transmission time: This parameter defines the time of one transmission. In
reality the value depends on the amount of transmitted data. However,
a fixed transmission time is good enough for the simulation and further
reduces the software complexity. Considering the files from JProwler,
this variable is declared in “ZigBee2Node.java” and depends on the time
resolution of the simulator.

5.2.2 The Node Configuration Dialog

The node configuration dialog enables the on-line modification of the basic
node parameters. These are the three dimensional coordinates for the position
and the maximum radio strength. Additional paramaters due to the enhanced
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simulator are the initial clock drift, the individual ambient temperature, the
underlying oscillator technology and a boolean variable to determine if the node
should depend on the configured temperature. Figure 5.2 shows an example of
such a dialog. Therein, the button “crystal oscillator” opens a new dialog for
the oscillator configuration. The parameters in this dialog are individual for
each node.

Figure 5.2: The on-line configuration of a virtual node.

The Oscillator Selection Dialog

Figure 5.3: Every virtual node is based on an underlying oscillator model.

This dialog is demonstrated in Figure 5.3 and can be used to modify the
underlying oscillator technology for each node. Further the dialog makes it
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possible to change the temperature coefficients and the initial clock drift during
the simulation. If the initial clock drift is very big, then the temperature will
have a little influence on the oscillator frequency. This is especially true for the
crystal cuts whereas the RC-oscillator usually depends more strongly on the
temperature.

In the following we describe the characteristics of some interesting high fre-
quency crystal cuts (e.g. AT, BT, SC), several low frequency cuts (e.g. NT,
XY, H) and the RC-oscillator in a short. The temperature coefficients for all
these oscillators are chosen randomly within a short range based on the tutorial
from [Lic91]. The user has the possibility to change these parameters either
statically in the application or during the simulation within the oscillator se-
lection dialog.

AT cut: This crystal cut is the most commonly used for high frequency
oscillators and usually has a cubic frequency vs. temperature curve
caused by the dominant third order temperature coefficient of about
−0.0013ppm/℃2. The turnover temperature is located at about 25℃.
Further such crystals can be used for frequencies ranging from 500kHz
up to 40MHz. Figure 5.4 demonstrates the curve progression of a typical
AT cut.

BT cut: The BT cut crystal is again used for high frequencies. In contrast to
the AT cut family, these crystals have a poorer temperature characteristic
which is similar to a downward parabolic curve. This comes from the
dominant second order temperature coefficient of about −0.025ppm/℃2.
However, the BT cut allows a higher frequency of up to 50MHz. Figure 5.5
shows the typical frequency vs. temperature curve of such a crystal.
Therein, the frequency is most stable around the room temperature, but
slows down if the temperature is getting higher or lower.

SC (stress compensated) cut: The frequency vs. temperature curve of a SC
cut crystal seems to be linear due to the higher first order temperature
coefficient. The curve is visualized in Figure 5.6. This crystal cut is
generally more frequency stable to temperature variations and has a first
order temperature coefficient of about 0.01ppm/℃ to 0.04ppm/℃. The
turnover point is usually situated around 90 ℃.

NT cut: The frequency vs. temperature curve of an NT cut crystal is also
based on a dominant second order temperature coefficient of approxi-
mately −0.036ppm/℃2 and a turnover temperature within [15℃, 80℃].
This crystal type is used for frequencies ranging from 3kHz to 85kHz.
Figure 5.7 illustrates such a curve with a turnover point of about 80℃.

XY cut: Due to the smaller size, the XY cut is often used for real-time clocks
with frequencies in the 3 kHz to 85 kHz range. Crystals based on this cut
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have a second order temperature coefficient of about −0.033ppm/℃2 and
a turnover temperature of 25℃. Therefore, the behaviour is similar to the
BT cut crystals and the frequency vs. temperature curve demonstrated
in Figure 5.5 also equals an XY cut.

H cut: In contrast to other low frequency crystals, the H cut has a domi-
nant negative first order temperature coefficient and is usually used for
wide band filters with a frequency range from approximately 8kHz to
130kHz. For this reason, the frequency decreases linearly with an in-
crease in temperature. The first order temperature coefficient is within
[−8 · 10−6/℃,−16 · 10−6/℃] whereas the turnover temperature can vary
from 16℃ to 80℃. This behaviour is illustrated in Figure 5.8.

RC oscillator: The RC oscillators are widely used for low-cost applications and
therefore are important with respect to this thesis. Contrary to several
crystal cuts, the RC oscillator has a very big temperature influence. The
temperature characteristics generally equals a parabolic curve similar to
the BT cuts. The turnover temperature is not situated at the ambi-
ent temperature and usually has a greater frequency at this point than
the nominal frequency. Beside the strong temperature dependence, the
imprecision in frequency calibration for cheap RC oscillators is also the
reason why it is difficult to synchronize nodes based on such a technology.
The initial drift of RC oscillators is bigger and more varying than that
from the crystal cuts.

Figure 5.4: The typical cubic curve of
an AT cut crystal based
oscillator.

Figure 5.5: The typical parabolic
curve of a BT cut crystal
based oscillator.
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Figure 5.6: The typical curve of an SC
cut crystal based oscilla-
tor.

Figure 5.7: The typical curve of an
NT cut crystal based os-
cillator.

Figure 5.8: The typical linear curve of
a H cut crystal.

Figure 5.9: The typical curve of an
RC oscillator.

5.3 Simulation of Virtual Fireflies

The simulation of the fireflies is done via the enhanced JProwler simulator with
an additional Firefly specific graphical user interface. This GUI includes several
windows for debugging. For instance, the interval drift window illustrates the
current overall average interval and the deviation of all fireflies. Another win-
dow displays several debug parameters. The main simulator window demon-
strates the communication between the virtual nodes and further includes a
phase bar which visualizes the current phase state of all fireflies. Figure 5.10
shows a screenshot of the complete enhanced Firefly simulator.

5.3.1 The Network Topology Window

The network topology window is the main window of the simulator and vi-
sualizes the location of the nodes or fireflies. An arrow displays a directed
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Figure 5.10: The complete GUI-window of the Firefly-specific enhanced
JProwler simulator.

transmission of a message during a period. Figure 5.11 demonstrates an exam-
ple of a network topology window including 100 randomly distributed nodes.

Each Firefly is pictured with a filled bar and several parameters as depicted
in Figure 5.12. The first parameter indicates the node-ID whereas the second
parameter represents the maximum deviation an individual node has measured
with respect to the neighboring nodes during the last period. The time reso-
lution is based on the variable PHASE FACTOR and is initially set to 10000
units per second. Therefore, a maximum deviation of 10 corresponds to 1 ms.
This granularity is chosen because it is similar to the one used in the real world
application and thus should make the simulation more realistic. Next the third
parameter displays the adjustment value which is used for the clock drift cal-
ibration algorithm. Finally the parameter d in the second line illustrates the
phase deviation with respect to the overall average phase-state in the same
resolution as the other parameters. This value is also used to shade the color
of all virtual nodes in dependence of the deviation strength. The refresh of
the parameters, the color shading, and the phase-bar is done periodically with
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Figure 5.11: The topology window visualizes the simulated network topology
whereas the current communication exchange is displayed via ar-
rows.

Figure 5.12: The visualized parameters of a virtual Firefly.

a period duration which equals the calculated average interval over all nodes.
This gives the user the impression that the phase state keeps constant during
each period and therefore enables a better debugging.

Figure 5.13: The phase-bar is situated within the main simulator output win-
dow.

The phase bar is shown in Figure 5.13. Therein, each circle corresponds to
the current phase state of a Firefly whereas 0 percent means the beginning of a
new period and 100 percent equals the end of an interval. As mentioned above
the phase bar is a periodic snapshot with a refresh interval which equals the
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overall average interval. The user has also the option to enable a continuously
updated view.

5.3.2 The Interval Drift Visualization Window

This window is used to visualize the interval deviation due to the clock drift
among each node. The deviations and further the standard deviation is cal-
culated with respect to the average interval. The standard deviation is also a
quality criterion for the drift calibration algorithm and is also used to compare
the results based on different parameter choices. Figure 5.14 displays such
a window for a grouped multi-hop topology which is explained later in the
Chapter 6.

Figure 5.14: With respect to real-time, every virtual node has a different inter-
val duration.

5.3.3 Important Firefly Parameters

The implementation of the naturally inspired synchronization algorithm has
several important parameters which determine the behaviour of the fireflies.
The most important ones are described below. The Firefly configuration dialog
shown in Figure 5.15 enables the user to modify these variables during runtime.

Phase factor: Based on the phase jump function defined in Equation 4.7 the
phase is originally assumed to be in the range from 0 to 1. As a result
the implemented phase variables have to be represented as floating point
variables. This is unacceptable for the use in low-cost controllers. For this
reason, we decided to introduce a constant multiplier which quasi scales
the phase to the range from 0 to the predefined phase factor whereas
the position after the decimal point is truncated. Because the truncation
causes a lost in the phase precision, the phase factor has to be very great.
To get more realistic simulation results, the phase factor was chosen to
have the same dimension as the timer granularity of the real world imple-
mentation which is about 32000 ticks per second. Therefore, the phase
factor is defined to be 10000.
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Figure 5.15: Every Firefly can be configured individually.

Alpha value: This variable defines the coupling strength α of the phase jump
function defined in Equation 4.7. The upper and lower bound of this
parameter is described in Chapter 4. Because of the already described
floating point problem, this parameter is scaled with the phase factor and
is originally set to be 10100 which corresponds to α = 1.01.

Beta value: Assuming Equation 4.4, this variable corresponds to the parame-
ter β and usually has only a little influence on the phase jump function.
Further if the dissipation factor b is chosen to be in the order of 5 or
higher, then this parameter is very small and thus negligible. For in-
stance, a dissipation factor of b = 5 and a pulse strength of ε = 1.005 will
result in β = 0.0001. Therefore, after scaling this value with the phase
factor, this variable should then be set to 1. However, several experi-
ments have also shown that the synchronization results are better if this
variable is set to 0.

Network topology: The number of this variable defines the simulated network
topology. In the current implementation 10 different topologies are sup-
ported. These network configurations are described in detail in Table 5.1.

Topology
number

Description
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0 Two nodes are randomly distributed within an all-to-all commu-
nication network. Every node has also an initial random clock
drift.

1 100 nodes with an initial clock drift are randomly distributed
within an all-to-all communication topology.

2 100 nodes with an initial clock drift are randomly distributed
over a field with a size of 100x100 metres. Because the trans-
mission range is limited to about 30 metres, the topology highly
likely includes several multi-hop scenarios. This configuration
may be used for simulations which most likely occur in the real
world.

3 100 nodes with an initial clock drift are distributed within a
regular grid communication topology. Therefore, a node can
directly exchange messages with at most four other neighboring
nodes. A high diameter of this configuration can be used to test
the limits of a synchronization algorithm.

4 Ten nodes with an initial clock drift are ordered in a chain and
therefore simulate a multi-hop topology.

5 This configuration contains two clusters comprised of 50 nodes
which are respectively synchronized but there is no communica-
tion between these clusters. After 100 seconds two more nodes
are added to the network. These nodes have a bidirectional com-
munication channel to both clusters.

6 20 nodes with an initial clock drift are randomly distributed
within an all-to-all communication topology.

7 10 nodes with an initial clock drift are randomly distributed over
a field with a size of 1x1 metres. However, all nodes can only hear
node 0 whereas node 0 receives nothing. This communication
topology should demonstrate how nodes can be synchronized if
there exist unidirectional communication channels.

8 Three nodes with an initial clock drift are distributed over a 1x1
metres field. Node 0 and node 1 have a bidirectional communica-
tion channel, but messages from node 2 can only be received from
node 1. This communication topology enables the experimenta-
tion with respect to unidirectional communication patterns.

9 This topology type simulates a grouped multi-hop network and is
similar to the standard multi-hop topology, but with the addition
that each node is replaced with clusters. The nodes in a cluster
are based on an all-to-all communication pattern and have a
standard group size of 10 nodes.

Table 5.1: Definition of the supported network topologies.
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Number of byzantine nodes: Defines the number of byzantine nodes which
should be incorporated in the synchronization algorithm. A byzantine
node is a node which always transmits different incorrect messages in-
cluding the synchronization mode, the phase-state and several other pa-
rameters. If this variable is greater than zero, then this parameter defines
the number of nodes which should be ignored.

Synchronization interval (SYNC INTERVAL ms): This variable defines the
periodic time for the synchronization in milliseconds. The default value
is 1000ms. A greater value will reduce the duty-cycle and also increases
the time to synchronization.

Minimum firing offset (SYNC MIN OFFSET ms): This term refers to the
TMinOffset parameter defined in Section 4.1.1 and is depicted in Figure 4.1.
Therein, the minimum firing offset declares the offset with respect to the
end of the interval where transmission of synchronization messages must
not occur. The variable is defined in milliseconds and is initially set to
100ms.

Maximum firing offset (SYNC MAX OFFSET ms): This term refers to the
TMaxOffset parameter defined in Section 4.1.1 and is also depicted in Fig-
ure 4.1. Therein, the maximum firing offset declares the offset with re-
spect to the end of the interval. Transmission of synchronization messages
may only occur between the maximum firing offset and the minimum fir-
ing offset. In order to get acceptable results in an all-to-all topology
comprising 100 nodes, this variable is initially set to 400ms.

Transmission delay: The transmission delay corresponds to the time between
the start of a transmission at the source node and after the last bit is
received at the sink node. Whereas the propagation delay in wireless
technology is usually negligible, the transmission delay is often in the
order of milliseconds. This depends also on the amount of data and
further on the data rate. In sensor network applications this parameter
is generally lower than one milliseconds and therefore is initially set to
375µs. This parameter is also the reason why the Maximum firing offset
strongly depends on the number of nodes which are configured in an
all-to-all communication manner.

Flash duration: The flash duration is only used in the Firefly visualization of
the GUI and has no direct impact on the results. The default value is
300ms which is great enough to notice the flash of the fireflies.

Maximum number of synchronization periods: This parameter is very im-
portant and has a deep impact on the time to synchronization, because it
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defines the number of periods a node must keep in a predefined precision
window to be allowed to change to the sync-state. In detail, a node com-
pares the maximum absolute deviation with the synchronization window
and thus is able to decide if the precision is good enough. If the preci-
sion is outside this window, then the node resets a period counter. This
variable is initially set to 10 periods.

Synchronization window (HALF ACCURACY ms): The synchronization
window defines the upper bound of the synchronization. If a node notices
an absolute synchronization deviation which is outside the window,
then the node has to change to the unsync-state. The worst possible
precision is thus twice the synchronization window. The default value
for this parameter is 10 ms. A greater value may reduce the time to
synchronization but also degrades the precision.

Maximum RX-window size: The RX-window defines the time used by
the receiver unit for listening to the medium. The maximum
rx-window corresponds to the maximum possible time where all
nodes are still possible to synchronize. The initial value for this
variable is (SYNC INTERVAL ms − (SYNC MAX OFFSET ms −
SYNC MIN OFFSET ms) + 4 ∗ HALF ACCURACY ms).

Minimum RX-window size: The minimum RX-window size is an important
parameter which determines the duty-cycle after a network achieved syn-
chronicity. In order to receiver every synchronization message during the
firing interval, the RX-window must not be smaller than the duration be-
tween the maximum firing offset and the minimum firing offset. So if the
synchronization window is incorporated into the calculation, this variable
should equal (SYNC MAX OFFSET ms−SYNC MIN OFFSET ms +
6 · HALF ACCURACY ms).

RX-window reduction step: If a node enters the synchronization state, then
there is no need to listen to the medium outside the firing interval. To
avoid the problem of idle listening a node continuously reduces the RX-
window size every period due to this parameter. Note that the window
size can not not be smaller than the minimum RX-window size. The
default reduction step is 1ms per period.

RX-window increase step: In contrast to the window reduction step, the win-
dow increase step is used if a node recognizes an out of sync event. As
long as the node keeps unsynchronized, the RX-window size will be in-
creased due to this parameter until it reaches the maximum RX-window
size. Usually if a node changes to the unsync-state, it can be assumed that
other nodes are also unsynchronized. Therefore, the parameter was ini-
tially set to RX MAX WINDOW SIZE ms and thus if a node becomes
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unsynchronized, the RX-window size will automatically be enlarged to
the maximum RX-window size.

Number of periods for full RX-window: To support graceful scalability, it is
necessary to incorporate the adding of new nodes to an already syn-
chronized network. The nodes in an already synchronized network usu-
ally have reduced the RX-window to the minimum RX-window size and
therefore are not possible to receive synchronization messages outside this
interval. As a result if the new node has a phase state which is completely
different to the synchronized nodes, then the new node will either never
get synchronized or the time to synchronization will strongly increase.
The initial value is set to 20 periods. A greater value reduces the power
consumption but may increas the time to synchronization of the new node
and therefore should be carefully chosen.
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6 Simulation Experiments

The simulation results discussed in this chapter should give an overview of the
achievable quality of the naturally inspired Firefly synchronization. For this
reason, several network topologies have been developed and simulated. The
results are compared due to different parameter choices like the coupling factor
α, and the number of nodes in the network. To be able to compare the results
in a useful manner, the results are based on the same evaluation metrics. The
next section describes how the measurement results are calculated.

6.1 Evaluation Metrics

In order to compare the simulation results with the outcomes from [WATP+05],
the evaluation metrics are similar to that one described in the work from Nag-
pal. Therefore, the two important evaluation metrics are the amount of time
until the system achieves synchronicity, and the quality of precision.

Time To Sync: This metric defines the time until all nodes have entered the
synchronization state whereas the time to sync is determined by two pa-
rameters. These are the synchronization window w and the number of
required periods where a node keeps within this window. In the following
we call the amount of required periods synchronization periods and is usu-
ally set to 10. A node only enters the sync-state, if the maximum absolute
deviation with respect to the other nodes is within the synchronization
window for 10 out of the last 11 firing iterations.

50th and 90th Percentile Group Spread: This metric differs from that one
defined in [WATP+05], because we only refer to one group. Therefore,
the group spread in the simulation is defined to be the maximum absolute
deviation with respect to the average deviation and thus cannot be greater
then the synchronization window w. In order to avoid incorrect results
due to settling effects during the startup phase, the start of the group
spread measurement is postponed against the time to sync ts and the time
the experiments ends te. On this account the group spread measurement
is performed during the interval [ts + te−ts

2
, te]. To get a good overview

of the results, we decided to plot the median and the 90th percentile

78



6 Simulation Experiments 6.2 General Parameter Settings

group spread. The results also contain the maximum absolute group
spread to determine the mavericks which generally determine the quality
of synchronization.

6.2 General Parameter Settings

Several parameter settings are the same for all experiments and are described
only once in this section. For instance, every virtual node is based on a virtual
RC-oscillator. Because the real nodes have a nominal frequency of 8MHz which
can vary from 7.4MHz to 8.2MHz, every virtual node has also a random initial
clock drift between −100000ppm and 100000ppm. The general values of the
other parameters are denoted in Table 6.1.

Parameter Value

Oscillator technology RC-oscillator
Initial clock drift ±100000
Interval time 1000ms
Maximum firing offset 300ms
Minimum firing offset 10ms
Phase factor 10000
Alpha value 10100/10000 = 1.01
Beta value 0
Transmission delay 375µs
Synchronization window 10ms
Evaluation end 3600 periods

Table 6.1: The general parameter choice used in all simulator experiments.

6.3 Simulation Results

The next sections shows the simulation results in dependence of several network
topologies and parameter choices. Every configuration was simulated several
times and the worst case results are presented.
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6.3.1 All-to-all Topology Results

Figure 6.1: A simulation snapshot of an all-to-all topology with 20 nodes.

The all-to-all communication topology is mainly used to measure the quality
of the synchronization in dependence of the number of nodes and the coupling
factor α. Such a network configuration is also shown in Figure 6.1. Therein,
every node is in the transmission range of every other node.

(a) Time to sync diagram (b) Group spread diagram

Figure 6.2: The time to sync and the group spread in dependence of the network
size and different coupling factors. The solid bars in (b) represent
the 50th percentile group spread, while the error bars correspond
to the 90th percentile.

The simulation results based on this topology should give a good overview
on the impact of different coupling factors. According to the diagrams in
Figure 6.2, the time to sync decreases with an increasing coupling factor α. If
the factor is too big, then synchronicity will not be achieved. This effect is due
to the upper bound we have already discussed in section 4.1.3. Further it seems
that the group spread which corresponds to the synchronization precision is the
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same and thus independent of the coupling factor. The high time to sync bar
in Figure 6.2(a) with α = 1.1 and a number of 20 nodes comes from the fact
that the coupling factor was too great.

6.3.2 Multi-hop Topology Results

Figure 6.3: A simulation snapshot of a grouped multi-hop topology with a net-
work diameter of 10 and a group size of 3 nodes.

This communication topology is the most important one, because in reality
nearly every sensor network is based on a nodes-to-sink communication topol-
ogy with a communication path consisting several hops. The simplest multi-hop
scenario is a network comprising n nodes which are ordered in a chain and can
only communicate with the immediate neighbors. We further call the chain
size network diameter. Such a network with a great network diameter is often
very problematic to synchronize, because every hop involves a communication
delay which degrades the overall synchronization precision. Our solution is
based on grouped multi-hop networks. Therein, the nodes are replaced with
clusters comprising several nodes which all have a bidirectional communication
path to the immediate neighboring clusters. Note that all grouped multi-hop
topologies treated in our experiments have the same network diameter of 10
hops but vary in the cluster/group size. A typical simulation snapshot of a
grouped multi-hop network is depicted in Figure 6.3.

The diagrams in Figure 6.4 shows the time to sync and the group spread in
dependence of different group/cluster sizes and coupling factors. The network
diameter is always the same. The analysis visualized in these diagrams leads
to the result that the precision increases with a bigger group size. This effect is
caused by the greater information about the interval drift due to the increased
number of neighboring nodes. If a node has more neighboring nodes, then the
node receives more information about the clock drift and can more precisely
calibrate the interval duration which also improves the synchronization preci-
sion. However, it is also important to have a preferably small coupling factor.
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(a) Time to sync diagram (b) Group spread diagram

Figure 6.4: The time to sync and the group spread in dependence of the cluster
size and different coupling factors. Note that the number of nodes
must be divided by 10 (network diameter) to get the group size.
The solid bars in (b) represent the 50th percentile group spread,
while the error bars correspond to the 90th percentile.

On the one hand this increases the time to sync, but on the other hand this
also increases the possibility that the network achieves synchronicity. Finally
it is difficult to find the best parameter settings for a given multi-hop network,
but it is definitely a good choice to have a group size of more than one node.
This also increases the dependability and availability of the network.

6.3.3 Regular Grid Topology Results

The regular grid topology is used as an evaluation topology and has only few
similarities with real sensor networks. Several experiments concerning this
section are based on a squared regular grid topology. We further correspond
the network diameter for this topology with the number of border nodes. For
instance, a network diameter of 4 corresponds to a regular grid topology with
4 · 4 = 16 nodes. Such a configuration is also depicted in Figure 6.5. Therein,
a node can only communicate with at most four immediate neighbors.

Simulations with a network diameter greater than 4 often did not achieve
synchronicity independent of the coupling factor. Therefore, the diagrams in
Figure 6.6 only contain the measurement results from a regular grid topology
with a network diameter of 4. The diagram in Figure 6.7 leads to the result that
the start condition (e.g. start-phase, initial clock drift) is mainly responsible
for achieving network synchronicity and the coupling factor has only a little
impact on the precision. The random initial drift has a deep impact on the
precision, because it seems that the clock drift calibration algorithm does not
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Figure 6.5: A simulation snapshot of a regular-grid topology with 4x4 nodes.

work very well in such a topology. The results may be better if the nodes were
replaced by clusters similar to the grouped multi-hop network.

(a) Time to sync diagram (b) Group spread diagram

Figure 6.6: The time to sync and the group spread in dependence of different
coupling factors. The solid bars in (b) represent the 50th percentile
group spread, while the error bars correspond to the 90th percentile.

The results listed in Table 6.2 show that the maximum absolute deviation
(group spread) is often in the vicinity of the synchronization window. As a
result it is highly likely that a node becomes out of sync even if this happens
after a long time (e.g. > 3600 periods). However, because our simulations
are performed with a maximum simulation time of 3600 periods, we observed
this behaviour very sparsely. For instance, in several measurements a network
achieved synchronicity after about 200-300 periods, but became unstable after
1000 or 2000 periods and, thus, some nodes got unsynchronized and reinte-
grated within the next few periods. In summary if such a network comprises
nodes which have a largely different clock drift, then it becomes difficult to
achieve and maintain synchronicity using the given approach.
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(a) Achieved synchronicity over 100 simula-
tions

(b) Average time to sync diagram

Figure 6.7: The percentage of achieved network synchronicity out of 100 sim-
ulations. A network synchronicity is only achieved if all nodes are
synchronized during the last 1000 periods. Figure (b) displays the
average time to sync of all simulations which achieved synchronicity.

Parameter
choice

Time
to sync

50th-
percentile

90th-
percentile

Maximum
deviation

Standard
deviation

(periods) (ms) (ms) (ms) (ms)

α = 1.005 233 2.200 3.000 4.000 0.472
α = 1.010 no sync
α = 1.050 400 0.900 4.500 9.000 0.722
α = 1.100 28 3.300 4.400 6.600 0.710
α = 1.150 no sync
α = 1.200 72 2.700 3.600 5.100 0.631

Table 6.2: Comparison of several parameters in dependence of different cou-
pling factors in a grid topology with 4x4 nodes.

6.3.4 Asynchronous Communication Results

Simple Unidirectional Communication

Other experiments concerns asynchronous communication patterns, especially
unidirectional communications. A typical evaluation topology comprises two
nodes (node 0 and node 1) whereas node 0 does not receive anything and node
1 receives messages from node 0. Several tests and simulations without the
incorporation of different clock drifts lead to the result that the Firefly algo-
rithm does not work well if there exist unidirectional communication patterns.
In detail, the phase of node 1 periodically comes into the vicinity of node 0
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but deviates more and more over time after the absolute deviation to node 0
is greater than the synchronization window and thus becomes unsynchronized.
This behaviour was observed with every coupling factor. As a result a major
prerequisite for complete network synchronicity is that there should never exist
unidirectional communication paths.

The Influence of Unidirectional Communication

Another experiment concerning unidirectional communication paths is a net-
work topology comprising three nodes which are again numbered serially from
0 to 2. Therein, node 1 has a bidirectional communication path to node 0 but a
unidirectional path to node 2. Consequently, node 0 can receive message from
both node 0 and node 2, but node 2 does not receive any messages. Instead
node 0 is also able to receive messages from node 1. This configuration should
allow node 0 and node 1 to get synchronized. However, node 2 may affect node
1 so strong that the node may keeps unsynchronized. We have simulated this
behaviour several times without the incorporation of random initial clock drift.
The measurements leads to the result that node 2 only becomes for a short
time synchronized with the other two nodes whereas the other two nodes al-
ways keep in synchronicity. Similar to the first asynchronous topology, we have
observed that the phase always drifts apart even if it is synchronized with the
other ones. As a result node 2 periodically becomes unsynchronized for a long
time. This behaviour was again observed with all possible coupling factors.

Ring Topology Experiments

Figure 6.8: A simulation snapshot of a ring topology with 10 nodes and an
unidirectional communication path.
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Experiments with a ring topology similar to the one pictured in Figure 6.8
have partially disproved the problem of asynchronous communication. The
unidirectional ring topology experiments lead to the result that network syn-
chronicity can be reached, even in the presence of asymmetric connections.
But the important prerequisite for achieving synchronicity in such a network
is that according to the graph theory, for every two nodes v and w, there
must exist a closed directed path, with repeated nodes allowed. Note that the
cycle length is also an indicator for the convergence time and achievable syn-
chronization precision. Taken together these results indicate that a multi-hop
network containing at least two completely different communication paths be-
tween two edge nodes will improve the precision even if there exists temporal
unidirectional connections.
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7 Testbed Environment

The testbed is based on Atmel’s demonstration kit ATAVRRZ200 which is
described in [Atm06a]. The kit features two component boards: The Display
Board and the Remote Controller Board (RCB)s. The Display Board is based
on an Atmega128 controller and features an LCD-module. This board also
works as a docking station for programming the RCBs. The RCBs therefore
are based on an Atmega1281 controller and contain an AT86RF230 (2450 MHz
band) radio transceiver.

7.1 The Software Implementation

The implementation of the synchronization algorithm is based on Atmel’s
802.15.4 MAC-Stack. Further to be able to test the synchronization, we de-
cided to use a modified version of the already implemented TTP/A protocol.
For this reason, the RODL ensures that there will be no collisions if a node
wants to transmit data to an other node.

7.1.1 The 802.15.4 MAC-Stack

In order to estimate the achievable precision, we measured several delays caused
by the MAC-Stack. We detected that the delay between a send event at the
application layer and the instant when the transmission really starts at the
physical layer is in the order of milliseconds. The reason for this is, that
the events are passed down from the application layer to the physical layer
through several sublayers. This is done by storing the messages in a FIFO
buffer which is continuously processed. The same delay was also measured at
the receiver. If several nodes want to transmitt at the same time, we sometimes
measured an overall delay of up to 10ms. This is unacceptable if we want to
achieve a precision which is lower than one millisecond. Thus, we implemented
a MAC timestamping which is based on the same timer as used for the MAC-
layer. It should be noted that the timers used at the MAC-layer are based on
a crystal oscillator and therefore are more precise than the timers left for the
application-layer which are based on an RC-oscillator. The MAC timestamping
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is performed by adding a new 16-bit time field to every message. This time
field contains the duration used for passing down the information from the
application layer to the physical layer at the sender. The receiver extracts this
duration field and stores a timestamp of the receiving event. When the message
at the receiver is passed up to the application layer, a callback function is called
which also contains the sender duration field and the receiver duration field in
the parameter list. The sum of both delays determine the complete MAC delay
without the incorporation of the negligible propagation delay.

7.1.2 Implementation of the Firefly Algorithm

The synchronization algorithm was implemented analogously to the implemen-
tation in JProwler. A simple RC-oscillator based 16-bit timer was used to
generate the synchronization interval with a duration of one second. Assuming
a nominal oscillator frequency of 8MHz, we decided to set a prescaler of 256.
As a result we get a granularity of 31250 ticks per second. This should be good
enough to achieve a synchronization precision lower than one millisecond.

We modified the initial settings of the MAC sublayer to reduce the trans-
mission delay. For this reason, we assumed that it is better to lose a message
than to transmit synchronization data which are so much postponed that the
time information contained in the message is incorrect. The parameters we
modify are described in the MAC PAN information base (PIB) information
base in [IEE03] and correspond to the CSMA scheme. For instance, we re-
duced the minimum backoff parameter and thus set the macMinBE attribute
to 0. This ensures that a message is transmitted at the same time after it is
passed down to the physical layer. According to [IEE03] a value of 0 disables
the collision avoidance during the first iteration of the CSMA algorithm. In
order to avoid the possibility that a message is postponed due to the CSMA
scheme, we also set the maximum number of backoffs the CSMA-CA algorithm
will attempt before declaring a channel access failure exponent to 0. This pa-
rameter is stored in the macMaxCSMABackoffs MAC PIB attribute. Finally
our synchronization algorithm is a distributed algorithm and thus does not
characterize a master node or a coordinator. On this account every node is
configured as a FFD and does not require any association process. However
this necessitates the use of predefined addresses. Originally one node of the
demonstration kit is configured as a coordinator which assigns a short 16-bit
address to all other nodes enabled in the network. Because we wanted to set
up a beacon-free network without the need of a coordinator, the software for
each node is compiled individually with different predefined short addresses.

As mentioned above we used a 16-bit timer to represet the synchroniza-
tion interval. The timer is configured in CTC mode where the Input Capture
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Register represents the top value. Every 16-bit timer supports three different
compare match events. Therefore, three different registers are continuously
compared with the current timer value. If the value matches than an interrupt
service routine is called. For this reason, we decided to use the output compare
C register to determine the transmission event for the firing offset. Considering
the energy awareness, we also have to add an event which enables the receiver
some time prior to the transmission start. This receiver enable event is per-
formed in the interrupt service routine of the output compare B register. Now
the output compare A is left and can be used for the TDMA communication.

7.1.3 The Modified TTP/A Protocol for TDMA
Communication

In order to exchange data between several nodes without the occurrence of col-
lisions, we decided to use a TDMA scheme which divides every TDMA round
into several slots. The original TTP/A protocol was implemented for the use
with a UART and further classifies one node as a master node. See [OMG03]
and [EI03] for further details. Because our synchronization algorithm does
not require special nodes like a master node, we replaced the synchronization
part from the protocol with our distributed Firefly synchronization algorithm.
Furthermore, the TTP/A protocol specifies an 8-bit logical name which is in-
dividual in a cluster. Because we used the predefined cluster-individual 16-bit
short address for the logical name, we had to modify several entry-types so that
it is possible to store all necessary data. For this reason, the basic RODL-entry
size increased from 4 byte to 6 byte. To reserve space for future needs, two
more bytes are added and in the current implementation a RODL entry has a
size of 8 byte.

Other important modifications refer to the IFS which is also described in
[OMG03]. Every node can contain up to 64 files which have a maximum of
256 eight-byte records in each file. The documentation file is the only file
which has to be implemented on all nodes. It has the file number 0x3D and
is necessary in order to identify a node. Originally, eight files can be used to
determine the slots from six multi-partner rounds. These files are separated
into the master slave data round, and the master slave address round. Because
we have no master node in our specification, we used all eight files for multi-
partner rounds. In our implementation the file-entries does not describe the
slots comprised in a round. Instead every file corresponds to a slot whereas
the entries correspond to the operation for a dedicated round number. On
this account every period is divided into eight slots which correspond to the
eight files whereas the file entries describe the operation of a slot for a specific
round. In the original TTP/A version, there exist several special files. However,
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most of them are not needed for the Firefly synchronization. Therefore, we
removed the membership file and the ROSE file. Additionally, the current
implementation does not contain the documentation file. Other special files
used in the Firefly version of the TTP/A protocol are the configuration file
and the RODL file. The configuration file contains among other things the
current state of a node. Note that the states of the modified protocol differ
from the original TTP/A version and are depicted in Figure 7.1.

Figure 7.1: State diagram of the modified TTP/A - protocol

7.2 Resource Requirements

Because most of the integrated peripherals are already used by the MAC stack,
we want to give a short overview about the task of several timers. Further this
section gives an estimation about the required program memory and ram size.
The main system clock is based on a RC oscillator and has a nominal frequency
of 8MHz. So, if the prescaler of a timer is connected to the internal clock, then
the RC oscillator is also responsible for the clock granularity of the timer.

Timer0: The 8-bit timer0 is not used by the MAC layer and can be utilized
at the application layer. However, the hardware wiring does not provide
the use of an external clock.
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Timer1: Timer1 is a 16-bit timer and can be clocked from an external pin.
According to the schematics, this external pin is connected to an exter-
nal 3.68MHz crystal with a tolerance of 0.5%. However, this timer is
again used by the MAC layer and therefore can not be shared with the
application layer.

Timer2: The 8-bit timer2 is the only timer which supports asynchronous oper-
ations and therefore can be clocked from an external 32kHz watch crystal
independent of the I/O Clock. For this reason, the timer is used by the
MAC layer to support sleep commands and thus can not be shared with
the application layer.

Timer3: Timer3 is also a 16-bit timer. Because no external clock is connected
to the T3-pin, timer3 can only be used with the system clock. Moreover
this is the only free 16-bit timer which supports input capture and com-
pare match. For this reason, timer3 was chosen to be used for the Firefly
synchronization algorithm.

Timer4: This 16-bit timer can only be clocked from the internal system clock,
because the Atmega1281 controller does not support the T4-pin. There-
fore, timer4 is free for the use at the application layer. However according
to [Atm07] the input capture and output compare functionalities are not
available in the Atmega1281 controller. In the current implementation
timer4 was used temporarily to measure the duration of different tasks
but can also be used at the application layer.

Timer5: Similarly to timer4, this 16-bit timer can only be clocked from the
internal I/O clock, because no T5-pin is provided. Further the input cap-
ture and output compare functionalities for timer5 are again not available
in the Atmega1281 controller. This timer can be used at the application
layer.

7.2.1 Memory Analysis

To get an overview of the required memory, a memory analysis was performed
individually for the MAC stack and for the synchronization algorithm in com-
bination with the modified TTP/A protocol. The memory requirements from
the application layer was assumed to be negligible and is therefore incorporated
into the analysis. Table 7.1 shows the memory requirements for the MAC stack.
Further Table 7.2 displays the memory requirements for the complete imple-
mentation of the Firefly algorithm and the modified TTP/A protocol without
the MAC stack. Consequently, there is enough program memory, but the static
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memory uses more than 65 percent. So, there are about 35 percent SRAM mem-
ory (∼ 2800Bytes) left for the application and the dynamic memory which may
be too little for a bigger application.

Type Available Used

Flash ROM 128 kByte 32160 Byte (24,54%)
SRAM 8 kByte statically 1704 Byte (20,8%)
EEPROM 4 kByte 0 Byte (0%)

Table 7.1: Memory analysis for the MAC-Stack

Type Available Used

Flash ROM 128 kByte 31191 Byte (23,8%)
SRAM 8 kByte statically 3722 Byte (45,43%)
EEPROM 4 kByte 0 Byte (0%)

Table 7.2: Memory analysis for the synchronization algorithm and the TTP/A
Protocol without the MAC stack
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8 Testbed Experiments

8.1 Evaluation Metrics

The evaluation metrics for the testbed experiments are similar to that one
used for the simulation experiments described in Chapter 6. Because it is
not easy to observe the relative deviations over all nodes in a network, we
decided that every node sends its individual maximum absolute deviation of
the last period to an evaluation node which then calculates the maximum over
all received deviations. This value is then taken to compute the 50th and the
90th percentile group spread.

8.2 General Parameter Settings

To be able to compare the testbed results with the simulator results, the pa-
rameter configuration has to be the same as used in the simulator experiments.
Table 8.1 denotes again the general parameter choice for several testbed exper-
iments. Unfortunately in reality it is not possible to speedup the time. For this
reason, we reduced the simulation end to 720 periods instead of 3600 periods.

8.2.1 Calculation of the Transmission Time

In order to calculate the transmission time, we first have to identify the amount
of data which is transmitted. The synchronization frame contains the frame-
identifier (8 bit), the synchronization state (8 bit), the nominal phase offset (16
bit), the phase adjustment value (16 bit), the sender timestamp (32 bit), the
tick-number (16 bit) and a checksum (8 bit). In sum the application needs 13
byte for one synchronization message. The real amount of transmitted data is
greater due to the payload of the MAC and the physical layer. According to
Section 2.6.5, the complete payload is about 15 byte (9 byte from the MAC
layer and 6 byte from the physical layer). Assuming that the system works in
the 2.4GHz frequency band, then the transmission rate is 250 kbps. As a result
the estimated transmission time equals 896µs and further can be assumed to
be about one millisecond.
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Parameter Value

Oscillator technology RC-oscillator
Initial clock drift ±100000
Interval time 1000ms
Maximum firing offset 300ms
Minimum firing offset 10ms
Phase factor 10000
Alpha value 10100/10000 = 1.01
Beta value 0
Transmission delay 320µs
Synchronization window 10ms
Evaluation end 720 periods

Table 8.1: The general parameter choice used in several testbed experiments.

In the synchronization application, the transmission time is hard coded to
correct the timestamps. Unfortunately the Firefly algorithm does not estab-
lish a time synchronization but a synchronicity. Consequently, the hard coded
transmission time is based on the notion of real-time, but the established syn-
chronicity usually does not agree with the real-time. As a result it is impossible
to perfectly incorporate the transmission time even if it is locally scaled.

8.3 Testbed Results

8.3.1 All-to-all Topology Results

The results of an all-to-all topology comprising 5 ZigBee nodes in dependence of
several coupling factors are visualized as histograms. Figure 8.1, Figure 8.2, and
Figure 8.3 shows such a diagram for different coupling factors. It is interesting
that all histograms have a right-skewed distribution.

Table 8.2 contains the simulation results and the testbed results with the
same network configuration. The table content demonstrates that the results
are similar. Whereas the 50th percentile group spread of the testbed measure-
ment is always better, the 90th percentile and the maximum absolute deviation
are very much higher. This may be caused by an insufficient implementation
of the clock rate calibration algorithm. These bad results could also be evoked
by the varying transmission delays at the MAC layer.
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(a) α = 1.005 (b) α = 1.01

Figure 8.1: Group spread histogram of an all-to-all network comprising 5 nodes.

(a) α = 1.05 (b) α = 1.1

Figure 8.2: Group spread histogram of an all-to-all network comprising 5 nodes.

Figure 8.3: Group spread histogram of an all-to-all communication network
comprising 5 nodes and with a coupling factor α = 1.15.

8.3.2 Multi-hop Topology Results

The results from the multi-hop experiments are important in order to get an
overview of the synchronization limits. The first scenario was made up of 5
nodes ordered in a chain where a node can only communicate with the imme-
diate neighbors. This enables a simple measuring setup which is also easy to
simulate. The only difference between the simulation and the testbed environ-
ment is that the testbed environment does not have an omniscient observer
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Parameter
choice

Time
to sync

50th-
percentile

90th-
percentile

Maximum
deviation

Standard
deviation

(periods) (µs) (µs) (µs) (µs)

α = 1.005 105 (152) 672 (1000) 2005 (1300) 3456 (2200) 538 (257)
α = 1.010 79 (57) 704 (900) 1632 (1300) 2592 (2000) 410 (250)
α = 1.050 24 (35) 704 (900) 1973 (1300) 3040 (1900) 501 (262)
α = 1.100 33 (20) 672 (1000) 1723 (1400) 3104 (2000) 451 (267)
α = 1.150 14 (20) 732 (900) 1965 (1300) 3776 (1800) 565 (250)

Table 8.2: Comparison of several parameters in dependence of different cou-
pling factors. The values between the brackets correspond to the
simulation results with the same all-to-all network configuration
comprising 5 nodes.

which is able to continuously measure the synchronization deviation between
any two nodes. In the all-to-all topology experiment, the synchronization infor-
mation of the last period was gathered at a special evaluation node. But this is
not possible within a multi-hop topology even if the topology is virtually set up,
because therein the only synchronization information a node can gather is with
respect to the immediate neighbors. For this reason, we decided to measure the
deviation with the aid of an oscilloscope whereas each node periodically sets
an output pin at the same phase state for a short time. In order to include the
influence of all hops in the measurements, the oscilloscope was connected to the
two edge nodes of a multi-hop network. As a result the oscilloscope must be
configured to trigger to the positive edge of the connected output pin and then
measure the time difference to the second edge node. Unfortunately this mea-
surement setup does not allow us to automatically gather the synchronization
information over several periods. Therefore, we manually made snapshots and
only took the diagrams, which display the biggest time deviation. Figure 8.4
shows the measurement setup for a typical multi-hop scenario comprising 5
nodes. Based on this topology, several oscilloscope snapshots over about 10
minutes were made. The two pictures with the greatest deviation are displayed
in Figure 8.5. As a result we can say that the precision of a realistic multi-hop
network with 4 hops is about 3 ms.

To get an overview of the degradation in precision with respect to the network
diameter, another multi-hop experiment consisting 9 nodes was performed. The
measurement setup is similar to the previous multi-hop network, but with the
difference that the oscilloscope additionally measures the phase state of the
centered node. This node is connected to the second oscilloscope channel and
thus should give a reference curve which can be compared with the results
from the previous described multi-hop topology with a network diameter of 5.
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Figure 8.4: The measurement setup for visualizing the deviation between the
edge nodes of a multi-hop network comprising 5 nodes.

Figure 8.5: Both oscilloscope snapshots are taken from a multi-hop network
comprising 5 nodes and with α = 1.01. They show a deviation of
about 2ms up to about 2.5ms between the edge nodes.

The measurement setup for this testbed experiment is visualized in Figure 8.6.
The testbed results from Figure 8.7 display a maximum deviation of up to
14ms. It is obvious that such a precision is unacceptable. In summary our
synchronization algorithm dramatically degrades with each hop and is therefore
not applicable for the use in a real sensor network application. It should be
noted that these bad results highly likely come from the big differences in clock
drift and that the clock drift calibration algorithm does not work very well in
such multi-hop networks.

Figure 8.6: The measuring setup for visualizing the deviation between the edge
nodes of a multi-hop network comprising 9 nodes.

We further measured the behaviour of a grouped multi-hop network as shown
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Figure 8.7: These oscilloscope snapshots show the deviation of the phase state
between the edge nodes in a multi-hop network with a network
diameter of 9. The alpha factor is set to 1.01.

in Figure 8.8. Because only 9 nodes were available for our experiments, this
was the only acceptable topology. Therein, the oscilloscope again measures the
state difference between the edge nodes. According to Figure 8.9, it can be
seen that the precision improved by about 50 percent. As a result in multi-hop
networks it is always better to use clusters comprising several nodes instead of
single nodes whereas the nodes in such a cluster must be based on an all-to-all
topology.

Figure 8.8: The measuring setup for visualizing the deviation between the edge
nodes of a quasi grouped multi-hop network comprising 3 clusters
with a cluster size of 2 and 2 edge nodes.

8.4 Energy Measurements

Beside the synchronization approach, the energy awareness is another aspect
of this thesis, because the energy consumption plays an important role for the
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Figure 8.9: The two snapshots show the deviation of the phase state between
the edge nodes in a modified grouped multi-hop network with a
cluster-size of 2 nodes an 4 hops. The alpha factor is set to 1.01.

device lifetime in battery-powered wireless networks, especially in wireless sen-
sor networks where no infrastructure is available. For this reason, we measured
the power usage over time of an RCB device. The measurement setup is based
on the usage of a measuring shunt which is inserted between the power supply
and the RCB. This configuration is shown in Figure 8.10. An oscilloscope
measures the voltage drop on this shunt which has a resistance value of exactly
1Ω. Consequently, a voltage of about 1mV corresponds to a current of 1mA.
Because all RCBs are battery-powered with two 1.5V AAA-batteries, we have
a voltage supply of 3 Volt. The resulting power consumption at each point in
time can then be calculated through the multiplication of the voltage supply
with the measured current. In order to get the device lifetime, we have to
calculate the electrical power and compare it with the electrical energy Wbat of
the batteries which we assume to be about 3V · 1200mAh = 3600mWh. The
average consumed electrical power Pavg can be calculated by multiplying the
supply voltage by the average consumed current:

Pavg = 3V · 1

T

∫ T

0

i(t) · dt

The resulting lifetime in hours is then the ratio Wbat/Pavg. Because both, the
enumerator and denominator, contain the same supply voltage, the fraction
can be reduced to the equivalent formula

tlife =
Ebat
Iavg

where Ebat corresponds to the battery charge usually denoted in mAh. If so,
then the formula determines the device lifetime (tlife) in hours. The parameter
Iavg defines the average current consumption and is similar to the average power
consumption

99



8 Testbed Experiments 8.4 Energy Measurements

Iavg =
1

T

∫ T
0
i(t) · dt.

Figure 8.10: The measuring setup for visualizing the consumed current over
time.

For further energy calculations, the diagrams in Figure 8.11 show the current
consumption for a complete period. Therein, the consumption can be classified
into four parts:

1. Firing time

2. Idle time

3. Execution time

4. Transmission time

Firing time: This is the first part in Figure 8.11 and is classified by a continu-
ous current of about 8mA over a time of about 100ms. It corresponds to
the interval between the end of the period and the maximum firing offset.
The high current is explained by the fact that the receiver module must
be enabled during this time. The duration of this part mainly depends
on the parameter choice of the maximum and minimum firing offset. In
our test application we set these parameters to 10ms respectively 60ms.
To get a detailled information about the timing of this part, Figure 8.14
includes several oscilloscope snapshots which display the zoomed in firing
time. Therein, Figure 8.14(b) shows the duration between the start and
the end of the firing part. This duration of about 60ms should equal
the difference of the maximum and minimum firing offset which is 50ms.
The missing 10ms comes from the fact that the receiver module is enabled
exactly 10ms before the maximum firing offset due to the synchroniza-
tion window. The consumed current during this time is about 20mA. It
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should be noted that the short peaks during these 60ms come from the
data exchange for the Firefly algorithm. The last 13ms with a current of
about 24mA results from the enabled receiver until the end of the period.
This is a safety margin, because a node may start a transmission exactly
at the minimum firing offset. If so, then the receiver must be enabled as
long as the transmission continues.

Idle time: The idle time is the part where the current consumption drops to
a minimum. The reason for the small current lies in the fact that the
device is dormant. Relating to Figure 8.11, this part corresponds to the
time where the diagrams display a minimum voltage of about 4mV . As
mentioned above this equals a current consumption of 4mA. The idle
time should be the biggest part in each period and thus determines the
duty-cycle.

Execution time: The execution time is the time where the RCB device exe-
cutes some code. In our work this is always the case during the firing time
when the device wants to broadcast or receive a message and at the end
of each period where the device has to apply the RFA. Other execution
tasks must be configure in the RODL file. In the test application used for
the energy measurement, the RODL file only contains one execution slot
per period. This executed task is responsible for the data preparation for
the data transmission in the following period. According to Figure 8.11
this part corresponds to the small current peak and is displayed in detail
in Figure 8.13. Therein, the diagram shows a current of about 11mA for
a duration of 1ms.

Transmission time: This part corresponds to the time where the device is
transmitting data. Normally this is always the case when the RCB wants
to broadcast its synchronization message during the firing time. Other
transmissions during the period must be registered in the RODL file.
This is also the case for our test application and therefore corresponds to
the high current peak in Figure 8.11. More detailled information about
the duration on this part can be seen in Figure 8.12. Therein, the trans-
mission part consumes a current of about 25mA over a time of 4.8ms. It
should be noted that this duration does not equal the calculated trans-
mission time of 1ms from Section 8.2.1. This comes from the fact, that
the transceiver requires some time for the startup phase. Secondary, the
MAC-layer also incorporates some delay which is described in detail in
Section 4.1.1. Therefore, we can assume that the maximum MAC delay
TMAC,max is about 5ms. Note that this is not really correct, because
the measured time does not involve all delays concerning the MAC layer.
For instance, the transceiver module is usually not activated immediately
after the MAC layer receives a send request from the application layer.
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Furthermore, the CSMA/CA scheme will also extend this duration.

(a) Current measurement during the idle time.

(b) Measurement of the current peak.

Figure 8.11: These two diagrams show the current consumption over a complete
period.

(a) The consumed current during a transmission. (b) Measurement of the transmission time.

Figure 8.12: These oscilloscope snapshots display the zoomed in transmission
part.

To get more information about the energy-efficiency, Table 8.3 sums up all
different energy consumers with the corresponding battery discharge in mAs.
In the case the period duration T is exactly one second, the values defined in
this table results in a battery discharge per cycle of about Edevice = 7.358mAs.
Thus, the average current consumption Iavg equals 7.358mA. Assuming that
our batteries deliver a charge of about Ebat = 1200mAh, then the resulting
lifetime (tlife) in hours can be calculated as follows:

tlife =
Ebat
Iavg

=
1200mAh

7.358mA
= 163h ' 1week
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(a) [The consumed current during a task execu-
tion.

(b) Measurement of the task execution time.

Figure 8.13: These figures visualize the zoomed in part including the task exe-
cution.

(a) The consumed current during the firing time. (b) Measurement of the firing time.

(c) Current consumption of the receiver module. (d) Time measurement.

Figure 8.14: The detailled diagrams including the duration between the maxi-
mum firing offset and the period end.
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It should be noted that the configured duty-cycle for this result is about 7
percent, but could be reduced by increasing the period time. If we assume
that the time slices of the other consumers are for the most part constant, then
a larger period time induces also a larger idle time. However, this is usually
not true, because a larger period time also entails a degredation in precision.
Therefore, the synchronization window w must be increased due to the new
period time. To simplify the correlation between the synchronization window
and the period time, we set the synchronization window w into proportion with
the period time T and denote the new synchronization window by wT = w · T .
This is logical due to the correlation with the drift rate. As a result, a doubled
period time will degrade the precision by a factor of two and further enforces a
larger synchronization window w by the same factor. Concerning the different
energy consumers, it is striking to note that only the first part of the firing
time depends on the synchronization window. The other parts (tf,2, te, and
tt) are constant. According to Section 4.1.1, tf,1 is the difference between the
maximum and minimum firing time. Furthermore, this part also contains the
synchronization window which acts as a safety margin. Taken together the first
part of the firing time then equals

tf,1 = TMaxOffset − TMinOffset + wT = N · TMAC,max + wT

whereas wT = w ·T and N denotes the maximum number of active nodes which
may exist simultaneously in an all-to-all topology. Due to the measurement
results from our test application, it follows that for the concrete parameter
settings (TMaxOffset = 60ms, TMinOffset = 10ms, w = 10ms, and TMAC,max ∼
5ms), the number of simultaneously active nodes in an all-to-all topology should
not be greater than 10. The duty-cycle is defined to be the ratio between
the sum of the two firing times (tf,1,tf,2), the execution time (te), and the
transmission time (tt) and the complete period time (T ). Thus, the duty-cycle
is hereinafter denoted by DC and corresponds to the equation

DC =
tf ,1 + tf ,2 + te + tt

T
= w +

tf ,2 + te + tt + N · TMAC ,max

T

which shows that it can not take a value less than the synchronization window
w.

To follow up on our special energy example, we further want to calculate the
improvement of the lifetime with respect to the lifetime as if no synchronization
approach would be established, i.e., the duty-cycle equals 100 percent. In that
case the average current consumption is 23.752mA. Consequently, a duty-cycle
of 100 percent reduces the lifetime to about 501

2
hours. A comparison among

the lifetime with a duty-cycle of 100 percent and the achieved lifetime with
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our configured duty-cycle of about 7 percent shows that the synchronization
approach improves the lifetime by a factor of three.

The following formula brings all these dependences into an equation:

Iavg(DC ) = Iidle · [1 − DC (T )] +
Ef ,1 + Ef ,2 + Ee + Et

T

Therein, Iavg describes the average current consumption1 of the device which
is a function of the duty-cycle DC(T ). Further, Ef,1, Ef,2, Ee, and Et are the
corresponding battery discharges for the firing times, the execution time and
the transmission time. Note that the battery discharge for the first part of the
firing time also depends on the period time:

Ef,1 = If,1 · tf,1 = If,1 · (N · TMAC,max + w · T )

As mentioned above, the duty-cycle is again a function of the period time T .
Taken together we come to the following formula:

Iavg = If,1 · w +
If,1 ·N · TMAC,max + Ef,2 + Ee + Et

T

+ Iidle ·
(

1− w − tf,2 + te + tt +N · TMAC,max

T

)
Figure 8.15 visualizes this behaviour. It becomes obvious that the curve is
similar to a hyperbola which is shifted up by a constant factor. In other words
the average current consumption converges to a constant current which equals
Iidle + w ∗ (If , 1− Iidle).

To illustrate the dependence between the lifetime improvement and the pe-
riod time, we define a new variable named improvement factor which is denoted
by η. As the name implies, this factor is the ratio between the improved lifetime
and the reference lifetime which corresponds to a duty-cycle of 100 percent at
the same period time. Due to the presence of the battery charge in the enu-
merator and denominator, the fraction can be reduced and the improvement
factor equals:

η =
Iavg(100%)

Iavg(DC (T ))

The characteristics of this factor can be seen in Figure 8.16.

1Note that the average power consumption Pavg is proportional to the average current
consumption.
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Figure 8.15: This diagram shows the average current consumption as a function
of the period time in seconds.

Figure 8.16: This diagram shows the improvement factor η as a function of the
period time in seconds.
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Energy
consumer

I
[mA]

t
[s]

Battery Energy
discharge consumption
per cycle per cycle

Firing Time, Part1 20.0 0.060 1.200 mAs 3.600 mJ
Firing Time, Part2 24.0 0.013 0.312 mAs 0.936 mJ
Execution Time 11.0 0.001 0.011 mAs 0.033 mJ
Transmission Time 25.0 0.005 0.125 mAs 0.375 mJ
Idle Time 6.2 tidle 6.2mA · tidle 18.6mW · tidle∑

T
1.648 mAs 4.944 mJ

+ 6.2mA · tidle + 18.6mW · tidle

Table 8.3: Listing of the major energy consumers and their corresponding bat-
tery discharge. The variable T denotes the duration of a complete
cycle period and tidle = T − (tf,1 + tf,2 + te + tt) defines the idle
time which is the difference between the period time T and the sum
of the two firing times (tf,1, tf,2), the execution time (te), and the
transmission time (tt). The energy calculation assumes a working
voltage of 3 Volt.
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9 Conclusion

An alternative synchronization approach based on the natural behaviour of
fireflies was introduced. This synchronization method supports complete scal-
ability and graceful degradation for the use in sensor networks. Contrary to
other algorithms like the central master synchronization, this distributed algo-
rithm does not require the use of special time master nodes. Several experi-
ments based on an all-to-all topology have shown that it is possible to achieve a
synchronization precision which is within one millisecond. However, if the net-
work is based on a multi-hop topology, then the precision degrades to the order
of several milliseconds. This is also the reason why it is difficult to achieve
synchronicity in a communication network comprising communication paths
including several hops. Further it is hardly possible to synchronize a complete
network if it contains asynchronous communication patterns. Due to the fact
that in reality many sensor networks eventually form unidirectional communi-
cation paths, this algorithm is not really applicable for sensor networks which
have to support high dependability and availability. Otherwise if such a net-
work is only used to gather data where it is not dramatic if some messages are
lost (e.g., meteorological station for temperature measurement), then the use
of such a synchronization scheme could be a choice.

Future work will rely on a better distributed clock drift calibration, because
several simulation results have shown that the clock drift has the most impor-
tant impact on the precision. Another method for improving the clock drift
could be the comparison of the clock with a reference clock with a better gran-
ularity during the startup phase of a node. This will also increase the time to
sync.
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A List of Acronyms

ACL Access Control List

AF Application Framework

APS Application Support

BE Backoff Exponent

CAP Contention Access Period

CCA Clear Channel Assessment

CID Cluster Identifier

CLH Cluster Head

COTS commercial off-the-shelf

CFP Contention Free Period

CRC Cyclic Redundancy Check

CSMA/CA Carrier Sense Multiple Access with Collision Avoidance

CW Contention Window

DCXO Digital Compensated Crystal Oscillator

FCS Frame Check Sequence

FFC Firing Function Constant

FFD Full-function Device

FIFO First In First Out

GTS Guaranteed Time Slot

IFS Interface File System

LLC Logical Link Control

LR-WPAN Low-rate Wireless Personal Area Network

MAC Media Access Control

macMaxCSMABackoffs Maximum Backoff Exponent

macMinBE Minimum Backoff Exponent

MaS Mirollo and Strogatz
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A List of Acronyms

MCXO Microcomputer Compensated Crystal Oscillator

MFR MAC Footer

MHR MAC Header

MPDU MAC Protocol Data Units

MSA master-slave address

MSD master-slave data

MSDU MAC Service Data Unit

NB Number of Backoff Periods

NWK Network

OCXO Oven Controlled Crystal Oscillator

OSI Open System Interconnection

PAN Personal Area Network

PCO Pulse-coupled Biological Oscillators

PHY Physical

PIB PAN information base

PID Proportional-Integral-Differential

PPDU Physical Protocol Data Unit

PRC Phase Response Curve

PSDU PHY Service Data Init

RAM Random Access Memory

RBS Reference-Broadcast Synchronization

RCB Remote Controller Board

RFD Reduced-function Device

RODL Round Description List

ROM Read-Only Memory

ROSE Round Sequence

RFA Reachback Firefly Algorithm

SAP Service Access Point

SNR Signal-to-noise Ratio

TCXO Temperature Compensated Crystal Oscillator

TDMA Time Division Multiple Access
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A List of Acronyms

TTP Time-Triggered Protocol

UWB Ultra Wideband

VCXO Voltage Controlled Crystal Oscillator

WCET Worst-Case Execution Time

ZC ZigBee Coordinator

ZDO ZigBee Device Object

ZED ZigBee End Device

ZR ZigBee Router
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